MATH 5128: Applied Probability I
Syllabus

- **Chapter 1: Probability**
 - Sample spaces, events, and axioms of probability
 - Conditional probability and Bayes’ Rule

- **Chapters 2: Random Variables**
 - Discrete and continuous random variables, expectation and variance
 - Joint distributions, expectation of a function of several random variables, and covariance
 - Variance of linear combinations of random variables

- **Chapter 3: Conditional Probability and expectation**
 - Discrete and continuous cases
 - Conditional expectation as a random variable
 - Computing probability, expectation, and variance by conditioning
 - Random sums of random variables

- **Chapter 4: Markov Chains**
 - Basic definitions
 - Classification of states, transient vs. recurrent states, absorbing states, periodicity
 - Regular Markov chains, stationary and limiting distributions, Law of Large number for regular MCs
 - Fundamental Matrix, Number of visits to transient states
 - Absorbing MCs

- **Chapter 5: Exponential Distribution and Poisson Process**
 - Memoryless property of the exponential
 - Counting processes
 - Relation between the Poisson process and the gamma process
 - Thinning Poisson processes
 - Compound Poisson process