PART I (Calculators not allowed)

1. If \(g(x) = x^2 + e^x \), then \(g'(x) = \)
 \(\textbf{(a)} \) \(x^2 + e^x \)
 \(\textbf{(b)} \) \(2x + e^x \)
 \(\textbf{(c)} \) \(x^2 + xe^{x-1} \)
 \(\textbf{(d)} \) \(2x + xe^{x-1} \)
 \(\textbf{(e)} \) \(2 + e^x \)

2. \(\frac{d}{dx}(x \sin x) = \)
 \(\textbf{(a)} \) \(\sin x \)
 \(\textbf{(b)} \) \(\cos x \)
 \(\textbf{(c)} \) \(-\cos x \)
 \(\textbf{(d)} \) \(\sin x - x \cos x \)
 \(\textbf{(e)} \) \(\sin x + x \cos x \)

3. If \(f(t) = \frac{\ln t}{t} \), then \(f'(2) = \)
 \(\textbf{(a)} \) \(\frac{\ln 2}{2} \)
 \(\textbf{(b)} \) \(\frac{1 - \ln 2}{4} \)
 \(\textbf{(c)} \) \(\frac{1 + \ln 2}{4} \)
 \(\textbf{(d)} \) \(\frac{1}{2} \)
 \(\textbf{(e)} \) \(\frac{1}{4} \)
4. If \(f(x) = (3x^2 + 1)^4 \), then \(f'(x) = \)

 (a) \((3x^2 + 1)^4 \)

 (b) \(24x(3x^2 + 1)^3 \)

 (c) \(4(3x^2 + 1)^3 \)

 (d) \(4(6x)^3 \)

 (e) \(4(6x + 1)^3 \)

5. Which of the following is correct?

 (a) \(\frac{d}{dx}(\ln(3x^2 + 4)) = \ln(3x^2 + 4) \)

 (b) \(\frac{d}{dx}(\ln(3x^2 + 4)) = \frac{1}{3x^2 + 4} \)

 (c) \(\frac{d}{dx}(\ln(3x^2 + 4)) = \frac{1}{6x} \)

 (d) \(\frac{d}{dx}(\ln(3x^2 + 4)) = \ln 6x \)

 (e) \(\frac{d}{dx}(\ln(3x^2 + 4)) = \frac{6x}{3x^2 + 4} \)

6. Let \(h(s) = \sin^2(2s) \). Then \(h'(s) = \)

 (a) \(4\sin(2s)\cos(2s) \)

 (b) \(2\sin(2s)\cos(2s) \)

 (c) \(\cos^2(2s) \)

 (d) \(2\cos^2(2s) \)

 (e) \(2\cos(s) + 2 \)
7. Let \(f(x) = x^3 - 3x^2 + 7 \). Which of the following statements is true?

(a) \(f \) is increasing on \((-\infty, \infty)\)
(b) \(f \) is decreasing on \((-\infty, \infty)\)
(c) \(f \) is increasing on \((0, \infty)\)
(d) \(f \) is decreasing on \((0, 2)\)
(e) \(f \) is increasing on \((0, 2)\)

8. Consider the graph of the function \(f \):

Which of the following is correct?

(a) \(\lim_{x \to 1} f(x) = 4 \)
(b) \(\lim_{x \to 1} f(x) = 3 \)
(c) \(\lim_{x \to 1} f(x) = 2 \)
(d) \(\lim_{x \to 1} f(x) = 1 \)
(e) \(\lim_{x \to 1} f(x) \) does not exist

9. \(\lim_{x \to \infty} \frac{x^2 + 1}{xe^x + 1} = \)

(a) \(\infty \)
(b) 1
(c) \(-1\)
(d) 0.01
(e) 0
10. Let \(g(x) = 3x^2 + 1 \). Which of the following is the equation of the tangent line to the graph of \(g \) at \(x = 1 \)?

(a) \(y - 6 = 4(x - 1) \)
(b) \(y = 4(x - 1) \)
(c) \(y = 6(x - 1) \)
(d) \(y - 4 = 6(x - 1) \)
(e) \(y - 6 = 6(x - 1) \)

11. \(\lim_{x \to 0} \frac{2x^2 - x}{10x + 1} = \)

(a) \(-1/10\)
(b) \(0\)
(c) \(\infty\)
(d) \(1/5\)
(e) \(-\infty\)

12. Let \(f(x) = \frac{1}{x^2 + x + 3} \). Then \(f \) has a local maximum at \(x = \)

(a) \(0\)
(b) \(1/2\)
(c) \(1\)
(d) \(-1/2\)
(e) \(-1\)
13. Let \(f(x) = 6x^2 + 1 \). Which of the following is the general antiderivative of \(f \)?

(a) \(6x^3 + 1 + C \)
(b) \(6x^3 + x + C \)
(c) \(12x + C \)
(d) \(2x^3 + x + C \)
(e) \(6x^2 + 1 + C \)

14. For a certain function \(g \), it is known that \(g'(t) = 2t + \frac{1}{t} \) for \(t > 0 \) and \(g(1) = 2 \). Which of the following is correct?

(a) \(g(t) = t^2 + \ln t + 1 \)
(b) \(g(t) = t^2 + \ln t \)
(c) \(g(t) = 2t + \ln t \)
(d) \(g(t) = 2t + \ln t + 1 \)
(e) \(g(t) = t^2 + \ln t + 2 \)

15. Let \(f(x) = x^3 - 3x^2 + 7 \). Which of the following statements is true?

(a) The graph of \(f \) is concave up on \((-\infty, \infty) \)
(b) The graph of \(f \) is concave down on \((-\infty, \infty) \)
(c) The graph of \(f \) is concave down on \((-\infty, 1) \) and concave up on \((1, \infty) \)
(d) The graph of \(f \) is concave up on \((-\infty, 1) \) and concave down on \((1, \infty) \)
(e) The graph of \(f \) is concave down on \((-\infty, 0) \) and concave up on \((0, \infty) \)
16. Let \(g(x) = \frac{1}{x} \). Then \(g'(x) = \\

(a) \ln x \\
(b) \frac{1}{x} \\
(c) \frac{x - 1}{x^2} \\
(d) -\frac{1}{x^2} \\
(e) 0 \)
PART II (Calculators allowed)

1. Let \(f(x) = e^{2x} \). Recall that the inverse \(f^{-1} \) stands for the inverse of the function \(f \). Which of the following is correct?

 (a) \(f^{-1}(x) = \frac{1}{2} \ln x \)

 (b) \(f^{-1}(x) = \ln x \)

 (c) \(f^{-1}(x) = \ln 2x \)

 (d) \(f^{-1}(x) = \frac{1}{2} \ln 2x \)

 (e) \(f^{-1}(x) = \ln(x^\frac{1}{2}) \)

2. Let \(f(x) = \sqrt{x - 2} \). The domain of the function \(f \) is

 (a) \([0, \infty) \)

 (b) \([1, \infty) \)

 (c) \([2, \infty) \)

 (d) \((-\infty, \infty) \)

 (e) \((-\infty, 2] \)

3. A ball is thrown straight up into the air with an initial velocity of 50 ft/s. The height \(h(t) \) of the ball after \(t \) seconds is given by \(h(t) = 50t - 16t^2 \). What is the average velocity for the time period beginning when \(t = 1 \) and lasting 0.1 seconds?

 (a) 16.4 ft/s

 (b) 50 ft/s

 (c) 18 ft/s

 (d) 1.64 ft/s

 (e) 32 ft/s
4. What is the slope of the tangent line to the curve \(y^2 + xe^y = 1 \) at the point \((1, 0)\)?

(a) \(-1\)
(b) 0
(c) 1
(d) 2
(e) 3

5. Let \(f(x) = 4x^3 + 3x^2 - 6x + 3 \). The absolute minimum value of \(f \) on the interval \([0, 1]\) is

(a) 3
(b) \(\frac{5}{4}\)
(c) 4
(d) 8
(e) \(-5\)

6. Let \(f(x) = \begin{cases} x^2 - 3 & \text{if } x \leq 1 \\ 2x - c & \text{if } x > 1 \end{cases} \). Assuming that \(f \) is continuous at \(x = 1 \), what must be the value of \(c \)?

(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
7. The radius of a sphere is increasing at the constant rate of 2 in/s. How fast is the volume increasing when the radius is 8 in? (Recall that the volume V of a sphere of radius r is given by $V = (4/3)\pi r^3$.)

(a) 256π in3/s
(b) 512π in3/s
(c) 2 in3/s
(d) 8π in3/s
(e) π in3/s

8. Let $f(x) = \sqrt{x}$. If the linear approximation of f at $a = 25$ is used to approximate $f(26)$, then the approximation obtained is

(a) 4.8
(b) 4.9
(c) 5.0
(d) 5.1
(e) 5.099

9. The graph of the equation $y = \tan x$ is shifted to the left 2 units. Which of the following is the equation of the resulting graph?

(a) $y = \tan x + 2$
(b) $y = \tan x - 2$
(c) $y = \tan(x + 2)$
(d) $y = \tan(x - 2)$
(e) $y = 2\tan x$
10. Suppose that Newton’s method is used to find the real root of \(x^5 - 3 = 0 \). If the initial guess (first approximation) is \(x_1 = 1 \), which of the following is closest to the second approximation \(x_2 \)?

(a) 1.4
(b) 1.3
(c) 1.2
(d) 1.1
(e) 1.0

11. Here is the graph of the derivative \(g' \) of a function \(g \):

Based on the graph, which of the following is necessarily true about the function \(g \)? (Note that you are given the graph of \(g' \), not \(g \).)

(a) \(g \) is increasing on \((-\infty, \infty)\)
(b) \(g \) is decreasing on \((-\infty, \infty)\)
(c) \(g \) is decreasing on \((-\infty, 0)\) and increasing on \((0, \infty)\)
(d) \(g \) is decreasing on \((-\infty, 1)\) and increasing on \((1, \infty)\)
(e) \(g \) is increasing on \((-\infty, 0)\) and decreasing on \((0, \infty)\)

12. Consider the curve with parametric equations:
\[
 x = 2 \cos t, \quad y = 3 \sin t
\]

If we eliminate the parameter, the resulting Cartesian equation of the curve is

(a) \(x^2 + y^2 = 1 \)
(b) \(x^2 + y^2 = 36 \)
(c) \(4x^2 + 9y^2 = 36 \)
(d) \(9x^2 + 4y^2 = 36 \)
(e) \(2x^2 + 3y^2 = 1 \)
13. At which of the following points on the curve \(y = \ln(x^2 + 6x + 11) \) is the tangent line horizontal?

(a) \((0, \ln 11)\)
(b) \((-1, \ln 6)\)
(c) \((-2, \ln 3)\)
(d) \((-3, \ln 2)\)
(e) \((-4, \ln 3)\)

14. Let \(f(x) = e^x \). Which of the following is the range of the function \(f \)?

(a) \((-\infty, \infty)\)
(b) \((-\infty, 0)\)
(c) \((-\infty, 1)\)
(d) \((1, \infty)\)
(e) \((0, \infty)\)
1. A particle moves along the x-axis. Its position at time t is $x(t) = t^3 - 6t^2 + 1, \; t \geq 0$, where t is measured in seconds and x is measured in meters.

 (a) Where is the particle at time $t = 0$?

 (b) Determine the velocity of the particle at time t.

 (c) For which times t is the particle moving to the right?

 (d) Determine the acceleration of the particle at time t.

 (e) For which times t is the particle speeding up?
2. For a certain function f the following information is known:

(i) f and its first and second derivatives are continuous on $(-\infty, \infty)$;

(ii) $f'(x) < 0$ on $(-\infty, 0)$, and $f'(x) > 0$ on $(0, \infty)$;

(iii) $f''(x) > 0$ on $(-\infty, 1)$, $f''(x) < 0$ on $(1, 3)$, and $f''(x) > 0$ on $(3, \infty)$; and

(iv) $f(0) = 0$, $f(1) = 2$, and $f(3) = 5$.

(a) Find all local maximum and minimum values of f.

(b) Find the points of inflection.

(c) Sketch a graph which could be the graph of f.

3. Let \(f(x) = e^{x^2 - 2x} \).

(a) Find the critical number of \(f \).

(b) Find the intervals where \(f \) is increasing and the intervals where \(f \) is decreasing. Use calculus to justify your conclusions.

(c) Find any local maximum and minimum values of \(f \).
4. Consider the following optimization problem: Find the point on the curve \(y = \sqrt{x} \) which is closest to the point \((1, 0)\).

 (a) Let \(D \) denote the distance from \((1, 0)\) to a point \((x, y)\) on the curve \(y = \sqrt{x} \). Express \(D \) as a function of \(x \).

 (b) Find the critical number of the function \(D \).

 (c) Explain why \(D \) is minimized at this critical number. [Suggestion: Do a sign analysis of \(D' \).]

 (d) Which point on the curve \(y = \sqrt{x} \) is closest to \((1, 0)\)?
5. Recall that \sin^{-1} denotes the arcsine function (that is, the inverse of the sine function).

(a) What is \(\frac{d}{dx}(\sin^{-1} x) \)?

(b) Use the result of part (a) to find \(\lim_{h \to 0} \frac{\sin^{-1}(0.5 + h) - \sin^{-1} 0.5}{h} \).
Key to Part I:

1. b
2. e
3. b
4. b
5. e
6. a
7. d
8. a
9. e
10. d
11. b
12. d
13. d
14. a
15. c
16. d
Key to Part II:

1. a
2. c
3. a
4. a
5. b
6. e
7. b
8. d
9. c
10. a
11. c
12. d
13. d
14. e