ROBUST GENERALIZED LIKELIHOOD RATIO TEST BASED ON PENALIZATION

by

Meijiao Zhang

A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Charlotte

2018

Approved by:

__
Dr. Jiancheng Jiang

__
Dr. Zhiyi Zhang

__
Dr. Weihua Zhou

__
Dr. Yongge Wang
ABSTRACT

MEIJIAO ZHANG. Robust Generalized Likelihood Ratio Test Based On Penalization. (Under the direction of DR. JIANCHENG JIANG)

The Least Absolute Deviation combined with the least absolute shrinkage and selection operator (LAD-lasso) estimator can do regression shrinkage and selection and is also resistant to outliers or heavy-tailed errors which is proposed in Wang, Li and Jiang (2007). Generalized Likelihood Ratio (GLR) test motivated from the likelihood principle, which does not require knowing the underlying distribution family and also shares the Wilks property, has wide applications and nice interpretations. (Fan, Zhang and Zhang (2001) and Fan and Jiang (2005)). In this dissertation, we propose a GLR test based on LAD-lasso estimators in order to combine their advantages together. We obtain the asymptotic distributions of the test statistics by applying the Bahadur representation of the LAD-lasso estimators into the quantile regression theories. Furthermore, we show that the test has oracle property and can detect alternatives nearing the null hypothesis at a rate of \sqrt{n}. Simulations are conducted to compare test statistics under different procedures for a variety of error distributions including normal, $t(3)$ and mixed normal. A real data example is used to illustrate the performance of the testing approach.

KEY WORDS: L1 regression, LAD-lasso, GLR test, Bahadur representation, Quantile regression, Oracle property.
ACKNOWLEDGMENTS

Upon the completion of this dissertation I would sincerely express my gratitude thanks to many people. First of all, I would like to thank my advisor Dr. Jiancheng Jiang for his excellent guidance, caring and patience during my graduate studies at UNC Charlotte. Besides providing me with an effective guidance on my research, his enthusiasm inspired me to push myself to always be better. This dissertation would not be possible without his guidance and encouragement. My appreciation also extends to Dr. Zhiyi Zhang, Dr. Weihua Zhou, and Dr. Yongge Wang for serving as very valuable members in my advisory committee who gave great suggestions on my research. I would also like to thank our Mathematics and Statistics Department. I enjoy the environment here where people are always willing to help each other, especially to Pro. Yuanan Diao, Pro. Shaozhong Deng, Pro. Yanqing Sun, Pro. Yang Li, Pro. Mohammad Kazemi, Pro. Joel Avrin, Pro. Wafaa Shaban and Mark Hamrick. In addition, I owe my thanks to my classmates and friends. They had given me very concrete guidance. Last but not least, I would like to deeply thank to my family who have provided endless support and inspiration whenever I was facing difficulties during my PhD life.
TABLE OF CONTENTS

LIST OF FIGURES vi
LIST OF TABLES vii

CHAPTER 1: INTRODUCTION 1
 1.1. Motivation 1
 1.2. Outline 4

CHAPTER 2: ROBUST GLR TEST BASED ON PENALIZATION 5
 2.1. Notations and Assumptions 5
 2.2. Bahadur Representations of the LAD-lasso Estimators 6
 2.3. Asymptotic Theory of the GLR Test Statistics 7

CHAPTER 3: SIMULATIONS 10
 3.1. Density Estimation under H_0 10
 3.2. Power Functions under H_1 11

CHAPTER 4: REAL DATA EXAMPLE 16

CHAPTER 5: CONCLUSION 20

REFERENCES 21

APPENDIX A: PROOFS OF THEOREMS IN SECTION 2.2 24
APPENDIX B: PROOFS OF THEOREMS IN SECTION 2.3 29
LIST OF FIGURES

FIGURE 1: Simulation Density Compared with True Density 11

FIGURE 2: Power of T_n and \tilde{T}_n Compared with Oracle 12

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>Power results of T_n for $N(0, 1)$ error</td>
<td>13</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>Power results of \tilde{T}_n for $N(0, 1)$ error</td>
<td>13</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>Power results of T_n for $t(3)$ error</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 4</td>
<td>Power results of \tilde{T}_n for $t(3)$ error</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>Power results of T_n for mixed normal error</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 6</td>
<td>Power results of \tilde{T}_n for mixed normal error</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 7</td>
<td>Estimates and standard errors</td>
<td>17</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 Motivation

Consider the linear model

\[y_i = x'_i \beta + z'_i \gamma + \varepsilon_i \] \hspace{1cm} (1)

where \(\varepsilon_i \) are identically independently distributed (i.i.d.) random noises with median 0 and \(E|\varepsilon_i| = \sigma > 0 \). \(\beta \) and \(\gamma \) are unknown parameters.

To obtain an estimator to be robust against outliers and error distributions and also enjoy a sparse representation, Wang, Li and Jiang (2007) proposed a robust lasso-type estimator, minimizing from the following LAD-lasso criterion:

\[\text{LAD-lasso} = Q(\beta) = \sum_{i=1}^{n} |y_i - x'_i \beta| + n \sum_{j=1}^{p} \lambda_j |\beta_j| \]

In the current study we propose a robust GLR test based on L1 regression to improve likelihood ratio test. The idea is applicable to some parametric, semiparametric, and nonparametric models.

Our interest here lies on the following testing problem

\[H_0 : \gamma = \gamma_0 \quad \text{vs.} \quad H_1 : \gamma \neq \gamma_0 \]

regarding \(\beta \) as nuisance parameters.

Let \(Y = (y_1, ..., y_n)' \), \(X = (x_1, ..., x_n)' \), \(Z = (z_1, ..., z_n)' \), and \(\varepsilon = (\varepsilon_1, ..., \varepsilon_n)' \) in model
(1). The reduced model is

\[Y = X\beta + Z\gamma_0 + \varepsilon, \]

and the full model is

\[Y = X\beta + Z\gamma + \varepsilon. \]

When \(\varepsilon_i \) are normal, it is known that the LR test is equivalent to the F-test

\[F_n = \frac{(RSS_0 - RSS_1)/q}{RSS_1/(n - p - q)}, \]

where \(p = \text{dim}(\beta) \), \(q = \text{dim}(\gamma) \), and \(RSS_0 \) and \(RSS_1 \) are the residual sum of squares under \(H_0 \) and \(H_a \), respectively, based on the least squares estimation. Under the null hypothesis, \(F_n \) follows the \(F_{q,n-p-q} \) distribution. Under the alternative \(F_n \) has a non-central \(F_{q,n-p-q}(\nu^2) \) distribution with non-centrality parameter

\[\nu^2 = \sigma^{-2} \| (I_n - P_1)Z(\gamma - \gamma_0) \|^2, \]

where \(P_1 = X(X'X)^{-1}X' \), \(I_n \) is the \(n \times n \) identity matrix, and \(\| \cdot \| \) denotes the \(L_2 \) norm of a vector. In general, \(\nu^2 \) depends on the sample correlations between the variables in \(X \) and those in \(Z \) [Bickel and Doksum (2007)].

According to the previous argument, under \(H_a \), we consider the penalized least absolute deviation estimator minimizing

\[Q(\beta, \gamma) = \sum_{i=1}^{n} |y_i - x'_i\beta - z'_i\gamma| + n \sum_{j=1}^{p} \lambda_j |\beta_j|, \]

(2)

over \(\beta, \gamma \). Let \(\hat{\beta}, \hat{\gamma} \) be the resulting estimator. Then the residual sum of absolute
deviations is
\[RSS_1^* = \sum_{i=1}^{n} |y_i - x_i' \hat{\beta} - z_i' \hat{\gamma}| \]

Under \(H_0 \), we minimize
\[Q(\beta) = \sum_{i=1}^{n} |y_i - x_i' \beta - z_i' \gamma_0| + n \sum_{j=1}^{p} \lambda_j |\beta_j|, \tag{3} \]
over \(\beta \) and get the minimizer \(\hat{\beta}_0 \).

The residual sum of absolute deviations is
\[RSS_0^* = \sum_{i=1}^{n} |y_i - x_i' \hat{\beta}_0 - z_i' \gamma_0| \]

Since the error distribution is not specified, the LR test is not available here. Intuitively, we can compare the residual sum of squares from the null and alternative models. Following the idea in Fan et al. (2001) and Fan and Jiang (2007), we define the GLR statistic
\[T_n = \frac{n}{2} \log(RSS_0^*/RSS_1^*) \approx \frac{n}{2} \frac{RSS_0^* - RSS_1^*}{RSS_1^*} \tag{4} \]
Large values of \(T_n \) suggest rejection of \(H_0 \). It is worth pointing out that the GLR test of Fan et al. (2001) is different from the GLR test proposed here, since their GLR test did not use regularization.

In the above estimation we have penalized the nuisance parameters but not the interesting parameters. This is different from the common penalized estimation for variable selection, where all parameters are penalized. This GLR test is an improvement over the common method for two reasons:

- It improves the power of GLR test by penalizing only the nuisance parameters.
• It keeps the size of GLR test without penalizing the interesting parameters.

If the true values of interesting parameters γ are zero and all parameters are penalized, then asymptotically there is no difference between the penalized estimators of parameters under the null and alternative because of their oracle properties.

1.2 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we begin to discuss my model and the theoretical results based on my proof. We proposed the new test statistics, termed as the Generalized Likelihood Ratio test, to test if the coefficient without penalization under high dimensional multiple linear regression model is constant or not. The test statistics is constructed based on the comparison of the generalized likelihood under null and alternative hypotheses respectively. The asymptotic distribution of the test statistics has been derived and the detailed proofs are provided in the Appendix section. In Chapter 3, we use the simulation results to show the good performance of our test statistics and compare our working procedure with the oracle procedure to illustrate the oracle properties of our test statistics. In Chapter 4, a real data example has been applied to show the significance of the testing procedure. In Chapter 5, we conclude the dissertation and discuss some possible directions for future work.
2.1 Notations and Assumptions

For convenience, we define the regression coefficient as \(\theta = (\beta', \gamma')' = (\beta_a', \beta_b', \gamma')' \), where \(\beta_a = (\beta_1, ..., \beta_{p_0})' \), \(\beta_b = (\beta_{p_0+1}, ..., \beta_p)' \) and \(\gamma = (\gamma_1, ..., \gamma_q)' \). Moreover, assume that \(\beta_j \neq 0 \) for \(j \leq p_0 \) and \(\beta_j = 0 \) for \(j > p_0 \) for some \(p_0 \geq 0 \) or \(\beta_b = 0 \). Thus the correct model has \(p_0 \) significant and \((p - p_0)\) insignificant regression variables of nuisance parameter \(\beta \). Under \(H_0 \), its corresponding LAD-lasso estimator is denoted by \(\hat{\theta}_0 = (\hat{\beta}_a', \hat{\beta}_b')' \). Under \(H_1 \), its corresponding LAD-lasso estimator is denoted by \(\hat{\theta} = (\hat{\beta}', \hat{\gamma}')' = (\hat{\beta}_a', \hat{\beta}_b', \hat{\gamma}')' \). In addition, we also decompose the covariate \(x_i = (x'_i a, x'_i b)' \) with \(x'_i a = (x_{i1}, ..., x_{ip_0})' \) and \(x'_i b = (x_{i(p_0+1)}, ..., x_{ip})' \) and define \(w_i = (x'_i, z'_i)' = (w_{i1}, ..., w_{il})' \) where \(z_i = (z_{i1}, ..., z_{iq})' \) and \(l = p + q \).

To study the theoretical properties of our GLR test statistics, the following assumptions are necessary needed throughout:

Assumption 2.1. The error \(\varepsilon_i \) has continuous and positive density at the origin.

Assumption 2.2. \(n^{-1/2} \max_{l \leq p+q, i \leq n} |w_{il}| = o_p(1) \).

Assumption 2.3. There exists positive definite \(\Sigma_{xz} \) such that

\[
n^{-1} (W'W) \overset{p}{\to} \Sigma_{xz},
\]

where \((w_{i1}, ..., w_{il}) = w'_i \) be the \(i \)th row of \(W \).
Denote
\[\Sigma_{xx} = E \left(\begin{pmatrix} x_1 x'_1 & x_1 x'_b & x_1 z'_1 \\ x_1 x'_a & x_1 x'_b & x_1 z'_1 \\ x_1 x'_b & x_1 x'_b & x_1 z'_1 \end{pmatrix} \right) = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\ \Sigma_{21} & \Sigma_{22} & \Sigma_{23} \\ \Sigma_{31} & \Sigma_{32} & \Sigma_{33} \end{pmatrix}, \]
so \(\Sigma_{xx} \triangleq E(x_1 x'_1) = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \) is positive definite and \(\Sigma_{33} = E(z_1 z'_1) \) is also positive definite. Define \(\Sigma \triangleq \begin{pmatrix} \Sigma_{11} & \Sigma_{13} \\ \Sigma_{31} & \Sigma_{33} \end{pmatrix} \), \(\Sigma^{-1} \triangleq \begin{pmatrix} \Sigma^{11} & \Sigma^{13} \\ \Sigma^{31} & \Sigma^{33} \end{pmatrix} \). Then \(\Sigma \) and \(\Sigma^{-1} \) are positive definite.

Assumption 2.4. Let \(a_n = \max\{\lambda_j, 1 \leq j \leq p_0\} \) and \(b_n = \min\{\lambda_j, p_0 < j \leq p\} \). \(\sqrt{n}a_n \to 0 \) and \(\sqrt{n}b_n \to \infty \) as \(n \to \infty \).

Note that Assumption 2.1, 2.2 and 2.3 are typical assumptions and used extensively in literature for establishing the \(\sqrt{n} \)-consistency and the asymptotic normality of the unpenalized LAD estimator. Furthermore, the Assumption 2.4 appears in Wang, Li, Jiang (2007) to build the oracle property of the penalized LAD-lasso estimator.

2.2 Bahadur Representations of the LAD-lasso Estimators

Under \(H_0 \), \(\hat{\Delta}_{\beta_0a} \triangleq \sqrt{n}(\hat{\beta}_0a - \beta_a) \) and \(\hat{\Delta}_{\beta_0b} \triangleq \sqrt{n}(\hat{\beta}_0b - \beta_b) \). Then we have the following theorem states as below.

Theorem 2.1. The Bahadur representations for \(\hat{\Delta}_{\beta_0a} \) and \(\hat{\Delta}_{\beta_0b} \) are
\[
\hat{\Delta}_{\beta_0a} = \frac{1}{2} f(0)^{-1} \Sigma_{11}^{-1} n^{-1/2} \sum_{i=1}^{n} x_{ia} \text{sgn}(\varepsilon_i) + o_p(1), \tag{5}
\]
where $\text{sgn}(x)$ is equal to 1 for $x > 0$, 0 for $x = 0$, and -1 for $x < 0$. And

$$
\hat{\Delta}_{b_b} = o_p(1). \tag{6}
$$

Under H_1, $\hat{\Delta}_{\beta_a} \triangleq \sqrt{n}(\hat{\beta}_a - \beta_a)$, $\hat{\Delta}_{\beta_b} \triangleq \sqrt{n}(\hat{\beta}_b - \beta_b)$ and $\hat{\Delta}_\gamma \triangleq \sqrt{n}(\hat{\gamma} - \gamma)$. Then we have the following theorem states as below.

Theorem 2.2. The Bahadur representations for $\hat{\Delta}_{\beta_a}$, $\hat{\Delta}_{\beta_b}$ and $\hat{\Delta}_\gamma$ are

$$
\hat{\Delta}_{\beta_a} = \frac{1}{2} f(0)^{-1} n^{-1/2}(\Sigma_{i=1}^{11} \Sigma_{i=1}^{n} x_i a \text{sgn}(\varepsilon_i) + \Sigma_{i=1}^{13} \Sigma_{i=1}^{n} z_i \text{sgn}(\varepsilon_i)) + o_p(1), \tag{7}
$$

$$
\hat{\Delta}_\gamma = \frac{1}{2} f(0)^{-1} n^{-1/2}(\Sigma_{i=1}^{31} \Sigma_{i=1}^{n} x_i a \text{sgn}(\varepsilon_i) + \Sigma_{i=1}^{33} \Sigma_{i=1}^{n} z_i \text{sgn}(\varepsilon_i)) + o_p(1), \tag{8}
$$

$$
\hat{\Delta}_{\beta_b} = o_p(1). \tag{9}
$$

Theorem 2.1 and Theorem 2.2 show that the Bahadur representation of the penalized estimator is the same as the unpenalized estimator, indicating that the penalized estimator has oracle property.

2.3 Asymptotic Theory of the GLR Test Statistics

Now let’s consider the asymptotic properties of our GLR test statistics.

Theorem 2.3. Under H_0, $T_n \xrightarrow{d} \frac{1}{8 f(0) \sigma} \chi_q^2$.

However, the distribution of T_n depends on nuisance parameters. So we define

$$
\tilde{T}_n \triangleq 8 \hat{f}(0) \hat{\sigma} T_n, \text{ where } \hat{f}(0) \triangleq \frac{1}{nh} \sum_{i=1}^{n} K(\frac{y_i - x_i^\prime \hat{\beta} - z_i^\prime \hat{\gamma}}{h}) \text{ and } \hat{\sigma} \equiv \frac{\text{RSS}^*}{n}. \tag{10}
$$

In the definition of $\hat{f}(0)$, the kernel $K(x)$ is the normal density function and h is the bandwidth. According to the nonparametric theory, $\hat{f}(0)$ is a consistent estimator of $f(0)$. Ap-
plying Lemma 7 in Appendix B, \(\hat{\sigma} \) is also a consistent estimator of \(\sigma \). So we propose the following corollary.

Corollary 2.3.1. Under \(H_0 \), \(\hat{T}_n \overset{d}{\to} \chi^2_q \).

This is an extension of the Wilks type of phenomenon, by which, we mean that the asymptotic null distribution of \(\hat{T}_n \) is independent of the nuisance parameter \(\sigma \) and the nuisance design density function \(f \).

To study the power of the proposed test, we consider the local (Pitman) alternatives of the form

\[
H_{1n} : \gamma = \gamma_0 + n^{-r} \Delta \gamma,
\]

where \(\| \Delta \gamma \| \neq 0 \) and \(a\gamma_0 + b\Delta \gamma \neq 0 \) for nonzero constants \(a \) and \(b \).

Theorem 2.4. For the testing problem \(H_0 \leftrightarrow H_{1n} \) when \(r < 1/2 \), the test \(T_n \) can detect alternative \(H_{1n} \) asymptotically with probability one.

Corollary 2.4.1. For the testing problem \(H_0 \leftrightarrow H_{1n} \) when \(r < 1/2 \), the test \(\tilde{T}_n \) can detect alternative \(H_{1n} \) asymptotically with probability one.

We conclude this section by considering the limiting behavior of the test statistic under the local alternative \(H_{1n} \) with \(r = 1/2 \).

Theorem 2.5. Under \(H_{1n} \) with \(r = 1/2 \), \(T_n \overset{d}{\to} \frac{1}{8f(0)\sigma} \chi^2_q(\rho^2) + C^2 \), where \(\rho^2 = 4f(0)^2 \Delta' \Sigma^{-1} \Sigma \Delta \gamma \),

\[
C^2 = \frac{f(0)}{2\sigma} \Delta' \Sigma_31 \Sigma_{11}^{-1} \Sigma_{13} \Delta \gamma.
\]

Corollary 2.5.1. Under \(H_{1n} \) with \(r = 1/2 \), \(\tilde{T}_n \overset{d}{\to} \chi^2_q(\rho^2) + D^2 \), where \(\rho^2 = 4f(0)^2 \Delta' \Sigma^{-1} \Sigma \Delta \gamma \),

\[
D^2 = 4f(0)^2 \Delta' \Sigma_31 \Sigma_{11}^{-1} \Sigma_{13} \Delta \gamma.
\]
The above theorem and corollary show that both the test T_n and \tilde{T}_n can detect the local alternatives at a maximum rate of \sqrt{n}, the optimal rate in all regular parametric tests.
CHAPTER 3: SIMULATIONS

Similarly to Section 2.1 of Wang, Li and Jiang (2007), we can easily get the LAD-lasso estimator by creating an augmented dataset including the penalized terms for nuisance parameters. In addition, we use the method in Section 2.3 of Wang, Li and Jiang (2007) to get the tuning parameter estimate for each \(\lambda_j \) which makes the LAD-lasso estimator enjoy the same asymptotic efficiency as the oracle estimator.

3.1 Density Estimation under \(H_0 \)

Specifically, we set \(p = 9 \) and \(\beta = (1, 0, 0, 0, 0, 0, 0, 0, 0)' \). In other words, the first \(p_0 = 1 \) regression variable is significant, while the other 8 are insignificant. We also set \(q = 3 \) and \(\gamma_0 = (1, 2, 3)' \). For a given \(i \), the covariates \(x_i \) and \(z_i \) are generated from a standard twelve-dimensional multivariate normal distribution. The sample size considered is given by \(n = 500 \). Furthermore, each response variable \(y_i \) is generated according to

\[
y_i = x_i' \beta + z_i' \gamma_0 + \varepsilon_i
\]

where \(\varepsilon_i \) is generated from \(N(0, 1) \).

According to Theorem 2.3 and its corresponding corollary, the distribution of \(T_n \) should be asymptotically \(\frac{1}{8f(0)\sigma} \chi^2_3 \)-distributed and \(\tilde{T}_n \) should be asymptotically \(\chi^2_3 \)-distributed. To verify this empirically, we plot the sampling distribution of 1000 simulation statistics of \(T_n \) and \(\tilde{T}_n \) against their true distribution density respectively.
via the kernel density estimate as shown in Figure 1. The two plots depict the T_n and \tilde{T}_n closely following their true distributions, which is consistent with our asymptotic theory.

![Figure 1: Estimated densities. (a) : T_n; (b) : \tilde{T}_n. Solid: true; dashed: the simulation approximation.](image)

3.2 Power Functions under H_1

We next investigated the power of our tests by considering the following alternative sequences indexed by $\theta = 0, 0.2, 0.4, 0.6, 0.8, 1.0$:

$$H_{1n} : \gamma = \gamma_0 + n^{-1/2} \theta \Delta_\gamma,$$

where $\Delta_\gamma = (-6, 0, 2)'$ and $\Delta_\gamma \perp \gamma_0$.

Note that when $\theta = 0$, the null and the alternative are the same. Therefore, we can expect that: 1) when $\theta = 0$, the power of the test should be close to the significance level; 2) the further is θ away from 0, the greater is the power. These are consistent with the plots as shown in Figure 2. Figure 2 illustrate the power functions of T_n and \tilde{T}_n against them of their oracle tests based on 1000 simulation iterations of sample
size $n = 500$ at three different significance levels: 0.1, 0.05, and 0.01. We can tell from the figure that our tests perform closely to the oracle tests, so our tests have oracle property and should mimic the oracle tests.

![Figure 2: Power functions of T_n and \tilde{T}_n.](image)

(a), (b) and (c): T_n; (d), (e) and (f): \tilde{T}_n; From left to right, significance levels are $\alpha = 0.1[(a), (d)], 0.05[(b), (e)], 0.01[(c), (f)]$. Solid: GLR-lasso test; dashed: Oracle test.

We next compare our test (GLR-lasso) with the unpenalized test using the LAD estimators (GLR) and oracle test for T_n and \tilde{T}_n respectively in three error distributions: $N(0, 1), t(3)$ and mixed normal $(0.95N(0, 1) + 0.05N(0, 9))$. The results in the tables below indicating that our test is robust against heavy-tailed errors and outliers due to the LAD and also has oracle property due to the LASSO.
Table 1: Power results of T_n for $N(0, 1)$ error

<table>
<thead>
<tr>
<th>θ</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 0.1 Oracle</td>
<td>0.104</td>
<td>0.154</td>
<td>0.340</td>
<td>0.643</td>
<td>0.877</td>
<td>0.961</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.092</td>
<td>0.143</td>
<td>0.323</td>
<td>0.563</td>
<td>0.800</td>
<td>0.936</td>
</tr>
<tr>
<td>GLR</td>
<td>0.087</td>
<td>0.124</td>
<td>0.202</td>
<td>0.320</td>
<td>0.491</td>
<td>0.701</td>
</tr>
<tr>
<td>0.05 Oracle</td>
<td>0.057</td>
<td>0.087</td>
<td>0.227</td>
<td>0.486</td>
<td>0.787</td>
<td>0.925</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.049</td>
<td>0.071</td>
<td>0.209</td>
<td>0.421</td>
<td>0.681</td>
<td>0.888</td>
</tr>
<tr>
<td>GLR</td>
<td>0.044</td>
<td>0.063</td>
<td>0.115</td>
<td>0.204</td>
<td>0.363</td>
<td>0.589</td>
</tr>
<tr>
<td>0.01 Oracle</td>
<td>0.009</td>
<td>0.019</td>
<td>0.088</td>
<td>0.269</td>
<td>0.555</td>
<td>0.823</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.007</td>
<td>0.011</td>
<td>0.052</td>
<td>0.183</td>
<td>0.418</td>
<td>0.665</td>
</tr>
<tr>
<td>GLR</td>
<td>0.004</td>
<td>0.015</td>
<td>0.027</td>
<td>0.064</td>
<td>0.169</td>
<td>0.336</td>
</tr>
<tr>
<td>1000 0.1 Oracle</td>
<td>0.094</td>
<td>0.164</td>
<td>0.354</td>
<td>0.622</td>
<td>0.866</td>
<td>0.974</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.084</td>
<td>0.160</td>
<td>0.316</td>
<td>0.574</td>
<td>0.802</td>
<td>0.933</td>
</tr>
<tr>
<td>GLR</td>
<td>0.100</td>
<td>0.125</td>
<td>0.217</td>
<td>0.348</td>
<td>0.507</td>
<td>0.706</td>
</tr>
<tr>
<td>0.05 Oracle</td>
<td>0.046</td>
<td>0.101</td>
<td>0.245</td>
<td>0.488</td>
<td>0.776</td>
<td>0.940</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.034</td>
<td>0.077</td>
<td>0.220</td>
<td>0.416</td>
<td>0.703</td>
<td>0.891</td>
</tr>
<tr>
<td>GLR</td>
<td>0.051</td>
<td>0.062</td>
<td>0.128</td>
<td>0.238</td>
<td>0.370</td>
<td>0.599</td>
</tr>
<tr>
<td>0.01 Oracle</td>
<td>0.008</td>
<td>0.024</td>
<td>0.082</td>
<td>0.275</td>
<td>0.558</td>
<td>0.814</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.005</td>
<td>0.019</td>
<td>0.069</td>
<td>0.184</td>
<td>0.432</td>
<td>0.716</td>
</tr>
<tr>
<td>GLR</td>
<td>0.012</td>
<td>0.015</td>
<td>0.038</td>
<td>0.090</td>
<td>0.176</td>
<td>0.338</td>
</tr>
</tbody>
</table>

Table 2: Power results of \tilde{T}_n for $N(0, 1)$ error

<table>
<thead>
<tr>
<th>θ</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 0.1 Oracle</td>
<td>0.098</td>
<td>0.152</td>
<td>0.333</td>
<td>0.622</td>
<td>0.868</td>
<td>0.955</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.090</td>
<td>0.137</td>
<td>0.320</td>
<td>0.553</td>
<td>0.787</td>
<td>0.930</td>
</tr>
<tr>
<td>GLR</td>
<td>0.087</td>
<td>0.125</td>
<td>0.199</td>
<td>0.324</td>
<td>0.489</td>
<td>0.702</td>
</tr>
<tr>
<td>0.05 Oracle</td>
<td>0.052</td>
<td>0.077</td>
<td>0.215</td>
<td>0.471</td>
<td>0.758</td>
<td>0.918</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.048</td>
<td>0.072</td>
<td>0.202</td>
<td>0.418</td>
<td>0.669</td>
<td>0.875</td>
</tr>
<tr>
<td>GLR</td>
<td>0.043</td>
<td>0.062</td>
<td>0.114</td>
<td>0.201</td>
<td>0.368</td>
<td>0.584</td>
</tr>
<tr>
<td>0.01 Oracle</td>
<td>0.008</td>
<td>0.017</td>
<td>0.084</td>
<td>0.245</td>
<td>0.527</td>
<td>0.804</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.009</td>
<td>0.012</td>
<td>0.057</td>
<td>0.184</td>
<td>0.406</td>
<td>0.644</td>
</tr>
<tr>
<td>GLR</td>
<td>0.005</td>
<td>0.014</td>
<td>0.028</td>
<td>0.061</td>
<td>0.166</td>
<td>0.329</td>
</tr>
<tr>
<td>1000 0.1 Oracle</td>
<td>0.080</td>
<td>0.153</td>
<td>0.335</td>
<td>0.599</td>
<td>0.856</td>
<td>0.969</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.084</td>
<td>0.149</td>
<td>0.313</td>
<td>0.560</td>
<td>0.788</td>
<td>0.928</td>
</tr>
<tr>
<td>GLR</td>
<td>0.094</td>
<td>0.121</td>
<td>0.212</td>
<td>0.345</td>
<td>0.493</td>
<td>0.694</td>
</tr>
<tr>
<td>0.05 Oracle</td>
<td>0.038</td>
<td>0.094</td>
<td>0.224</td>
<td>0.467</td>
<td>0.759</td>
<td>0.929</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.033</td>
<td>0.069</td>
<td>0.209</td>
<td>0.391</td>
<td>0.678</td>
<td>0.878</td>
</tr>
<tr>
<td>GLR</td>
<td>0.047</td>
<td>0.059</td>
<td>0.123</td>
<td>0.233</td>
<td>0.357</td>
<td>0.581</td>
</tr>
<tr>
<td>0.01 Oracle</td>
<td>0.007</td>
<td>0.023</td>
<td>0.078</td>
<td>0.265</td>
<td>0.536</td>
<td>0.796</td>
</tr>
<tr>
<td>GLR-lasso</td>
<td>0.005</td>
<td>0.019</td>
<td>0.063</td>
<td>0.177</td>
<td>0.411</td>
<td>0.693</td>
</tr>
<tr>
<td>GLR</td>
<td>0.011</td>
<td>0.015</td>
<td>0.040</td>
<td>0.087</td>
<td>0.172</td>
<td>0.325</td>
</tr>
</tbody>
</table>
Table 3: Power results of T_n for $t(3)$ error

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
<th>Test</th>
<th>θ</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.109</td>
<td>0.151</td>
<td>0.288</td>
<td>0.542</td>
<td>0.789</td>
<td>0.934</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.107</td>
<td>0.131</td>
<td>0.269</td>
<td>0.493</td>
<td>0.709</td>
<td>0.879</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.110</td>
<td>0.116</td>
<td>0.205</td>
<td>0.310</td>
<td>0.439</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.051</td>
<td>0.081</td>
<td>0.181</td>
<td>0.420</td>
<td>0.687</td>
<td>0.891</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.050</td>
<td>0.061</td>
<td>0.162</td>
<td>0.367</td>
<td>0.587</td>
<td>0.802</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.057</td>
<td>0.058</td>
<td>0.110</td>
<td>0.189</td>
<td>0.319</td>
<td>0.491</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.007</td>
<td>0.018</td>
<td>0.063</td>
<td>0.190</td>
<td>0.417</td>
<td>0.724</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.008</td>
<td>0.010</td>
<td>0.049</td>
<td>0.149</td>
<td>0.313</td>
<td>0.560</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.009</td>
<td>0.012</td>
<td>0.028</td>
<td>0.067</td>
<td>0.135</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.090</td>
<td>0.145</td>
<td>0.289</td>
<td>0.529</td>
<td>0.808</td>
<td>0.921</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.077</td>
<td>0.122</td>
<td>0.283</td>
<td>0.476</td>
<td>0.769</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.095</td>
<td>0.115</td>
<td>0.162</td>
<td>0.282</td>
<td>0.469</td>
<td>0.605</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.048</td>
<td>0.079</td>
<td>0.197</td>
<td>0.309</td>
<td>0.686</td>
<td>0.870</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.034</td>
<td>0.065</td>
<td>0.162</td>
<td>0.341</td>
<td>0.638</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.043</td>
<td>0.062</td>
<td>0.088</td>
<td>0.197</td>
<td>0.352</td>
<td>0.483</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.008</td>
<td>0.021</td>
<td>0.076</td>
<td>0.176</td>
<td>0.444</td>
<td>0.704</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.003</td>
<td>0.013</td>
<td>0.040</td>
<td>0.142</td>
<td>0.364</td>
<td>0.573</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.012</td>
<td>0.013</td>
<td>0.021</td>
<td>0.077</td>
<td>0.141</td>
<td>0.246</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Power results of \tilde{T}_n for $t(3)$ error

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
<th>Test</th>
<th>θ</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.064</td>
<td>0.103</td>
<td>0.214</td>
<td>0.458</td>
<td>0.732</td>
<td>0.906</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.070</td>
<td>0.087</td>
<td>0.205</td>
<td>0.408</td>
<td>0.643</td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.075</td>
<td>0.078</td>
<td>0.143</td>
<td>0.229</td>
<td>0.367</td>
<td>0.538</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.031</td>
<td>0.049</td>
<td>0.128</td>
<td>0.339</td>
<td>0.595</td>
<td>0.846</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.033</td>
<td>0.033</td>
<td>0.113</td>
<td>0.291</td>
<td>0.500</td>
<td>0.743</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.033</td>
<td>0.042</td>
<td>0.074</td>
<td>0.143</td>
<td>0.252</td>
<td>0.411</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.003</td>
<td>0.009</td>
<td>0.043</td>
<td>0.113</td>
<td>0.343</td>
<td>0.617</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.003</td>
<td>0.005</td>
<td>0.026</td>
<td>0.098</td>
<td>0.220</td>
<td>0.445</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.005</td>
<td>0.006</td>
<td>0.014</td>
<td>0.038</td>
<td>0.083</td>
<td>0.182</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.065</td>
<td>0.105</td>
<td>0.248</td>
<td>0.453</td>
<td>0.751</td>
<td>0.895</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.056</td>
<td>0.096</td>
<td>0.224</td>
<td>0.420</td>
<td>0.710</td>
<td>0.848</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.062</td>
<td>0.091</td>
<td>0.119</td>
<td>0.242</td>
<td>0.414</td>
<td>0.547</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.035</td>
<td>0.056</td>
<td>0.160</td>
<td>0.330</td>
<td>0.613</td>
<td>0.829</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.020</td>
<td>0.049</td>
<td>0.114</td>
<td>0.283</td>
<td>0.572</td>
<td>0.742</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.029</td>
<td>0.046</td>
<td>0.065</td>
<td>0.155</td>
<td>0.284</td>
<td>0.422</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.005</td>
<td>0.010</td>
<td>0.051</td>
<td>0.133</td>
<td>0.376</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.002</td>
<td>0.009</td>
<td>0.019</td>
<td>0.113</td>
<td>0.289</td>
<td>0.489</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.007</td>
<td>0.007</td>
<td>0.014</td>
<td>0.047</td>
<td>0.110</td>
<td>0.193</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Power results of T_n for mixed normal error

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
<th>Test</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.115</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.065</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.007</td>
</tr>
<tr>
<td>1000</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.097</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.042</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Table 6: Power results of \tilde{T}_n for mixed normal error

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
<th>Test</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.106</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.055</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.007</td>
</tr>
<tr>
<td>1000</td>
<td>0.1</td>
<td>Oracle</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.089</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>Oracle</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.038</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>Oracle</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR-lasso</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLR</td>
<td>0.006</td>
</tr>
</tbody>
</table>
CHAPTER 4: REAL DATA EXAMPLE

We use the data set in Jiang, Jiang, Song (2012). It consists a random sample of 113 hospitals and for each hospital there are 11 variables.

- Infection risk (y): Average estimated probability of acquiring an infection in the hospital.

- Age (x_1): Average age of patients (in years).

- Length of stay (x_2): Average length of stay of all patients in the hospital (in days).

- Routine culturing ratio (x_3): Ratios of number of cultures performed to number of patients without signs or symptoms of hospital-acquired infection, times 100.

- Routine chest X-ray ratio (x_4): Ratio of number of X-rays performed to numbers of patients without signs or symptoms of pneumonia, times 100.

- Number of beds (x_5): Average number of beds in the hospital during the study period.

- Average daily census (x_6): Average number of patients in the hospital per day during the study period.

- Number of nurses (x_7): Average number of full-time equivalent registered and
licensed practical nurses during the study period (number full time plus one half the number part time).

- Available facilities and services (x_8): Percent of 35 potential facilities and services that are provided by the hospital.
- Medical school affiliation (x_9): 1=Yes, 2=No.
- Region (x_{10}, x_{11}, x_{12}): 1=NE, 2=NC, 3=S, 4=W.

We study whether the infection risk depends on the possible influential factors. Since the medical school affiliation and region are categorical, we introduced a dummy variable x_9 for the medical school affiliation and three dummy variables (x_{10}, x_{11}, x_{12}) for the region as covariates. The model is linear,

$$y_i = \sum_{i=1}^{12} \beta_i x_i + \varepsilon_i, \quad i = 1, ..., 113.$$

We applied the LAD and LAD-lasso to get the coefficient estimates for each covariate. The tuning parameter estimation mentioned in Section (3.1) was applied in LAD-lasso method. The results of variable estimation and selection are presented in Table 7:

<table>
<thead>
<tr>
<th>Method</th>
<th>LAD</th>
<th>LAD-lasso</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0.12593(0.01547)</td>
<td>0.11584(0.00784)</td>
</tr>
<tr>
<td>x_2</td>
<td>0.29449(0.13214)</td>
<td>0.21798(0.06344)</td>
</tr>
<tr>
<td>x_3</td>
<td>0.02575(0.01589)</td>
<td>0.01493(0.00616)</td>
</tr>
<tr>
<td>x_4</td>
<td>0.01973(0.00726)</td>
<td>0.02056(0.00406)</td>
</tr>
<tr>
<td>x_5</td>
<td>-0.00351(0.00373)</td>
<td>0.00000(0.00086)</td>
</tr>
<tr>
<td>x_6</td>
<td>0.01129(0.00458)</td>
<td>0.00405(0.00136)</td>
</tr>
<tr>
<td>x_7</td>
<td>-0.00277(0.00232)</td>
<td>0.00000(0.00070)</td>
</tr>
<tr>
<td>x_8</td>
<td>-0.01541(0.01401)</td>
<td>0.00000(0.00395)</td>
</tr>
<tr>
<td>x_9</td>
<td>-0.00286(0.04532)</td>
<td>0.00000(0.02239)</td>
</tr>
<tr>
<td>x_{10}</td>
<td>-0.01932(0.33639)</td>
<td>0.00000(0.05143)</td>
</tr>
<tr>
<td>x_{11}</td>
<td>-0.91443(0.34513)</td>
<td>-0.40235(0.18229)</td>
</tr>
<tr>
<td>x_{12}</td>
<td>-1.49347(0.43851)</td>
<td>-1.41223(0.26854)</td>
</tr>
</tbody>
</table>
Table 7. From Table 7, we can see that all coefficients are nonzero in LAD since we did not apply penalty method. The LAD-lasso selected six variables: age \((x_1)\), length of stay \((x_2)\), routine culturing ratio \((x_3)\), routine chest X-ray ratio \((x_4)\), average daily census \((x_6)\) and the categorical variable region.

Since the estimated coefficients were positive for \(x_1, x_2, x_3, x_4, x_6\) and negative for \(x_{11}, x_{12}\), which indicates that, during the study period, infection risk \((y)\) increases with the average age of patients \((x_1)\), average length of stay of all patients in the hospital \((x_2)\), the routine culturing ratio \((x_3)\), the routine chest X-ray ratio \((x_4)\), the average number of patients in the hospital per day \((x_6)\) and decreases with the region corresponding to \(x_{11}\) and \(x_{12}\). This is reasonable, since elderly patients tend to have a weak resistance to infection, and larger \(x_2\) and \(x_6\) increase the chance of cross-infection among patients. In addition, routine cultures and chest X-ray may do harm to the body, and patients without signs or symptoms of hospital-acquired infection or pneumonia should receive it as little as possible. There may be also a region effect to the infection. People from South or West area have stronger resistance to infection comparing with those from other areas.

To check the significance of the selected variables, we performed the hypothesis testing problem:

\[
H_0 : \beta_1 = \beta_2 = \beta_4 = 0 \text{ versus } H_1 : \text{at least one of them is not zero.}
\]

So our interesting parameters are \(\beta_1, \beta_2, \beta_4\) while the nuisance parameters are the rest. We performed both GLR test and GLR-lasso test of \(\widetilde{T}_n\) to get p-values since their asymptotic null distributions are \(\chi^2(3)\) which does not depend on nuisance
parameters. The realized value of GLR was calculated as 111.23576 and 117.61400 of GLR-lasso. So the p-values for both tests are zero indicating that the selected variables were significant.
CHAPTER 5: CONCLUSION

In summary, under both the null and the alternative hypothesis we have proposed, the penalized estimators enjoy the oracle property of estimation. The resulting test statistics imitate the oracle test statistics in the sense that those unknown insignificant nuisance parameters were known in advance. Hence:

The GLR tests should mimic the oracle GLR test.

This is very useful when there are several insignificant nuisance parameters, for example, in high-dimensional regression models or even in classical multiple linear regression models.

In future work, we would like to apply our test to ARIMA models which the errors are not i.i.d distributed, and also semiparametric and nonparametric models. In addition, we could also expand the LAD-lasso estimators to various quantile regression methods and penalty functions.
REFERENCES

APPENDIX A: PROOFS OF THEOREMS IN SECTION 2.2

Lemma 1. Under H_0, $\sqrt{n}(\hat{\beta}_0 - \beta_a) = O_p(1)$ and $\hat{\beta}_{0a} = 0$ with probability tending to 1.

Lemma 2. The sequence of solutions $\hat{\beta}_0$ of (3) satisfies

\[n^{-1/2} \sum_{i=1}^{n} x_{ia} \text{sgn}(y_i - x_i'\hat{\beta}_0) \to 0 \text{ almost surely.} \]

(10)

Proof. Let $\{e_j\}_{j=1}^p$ be the standard basis of R^p. Define

\[G_j(a) = \sum_{i=1}^{n} |y_i - x_i'(\hat{\beta}_0 + ae_j)| + n\lambda_j|\hat{\beta}_{0j} + a|, \]

and let $H_j(a)$ be the derivative of $G_j(a)$, so that

\[H_j(a) = -\sum_{i=1}^{n} x_{ij} \text{sgn}(y_i - x_i'(\hat{\beta}_0 + ae_j)) + n\lambda_j \text{sgn}(\hat{\beta}_{0j} + a). \]

Using the method of Ruppert and Carroll (1980, proof of Lemma A.2), we can show that

\[n^{-1/2}|H_j(0)| \leq 2n^{-1/2} \sum_{i=1}^{n} |x_{ij}| I(y_i - x_i'\hat{\beta}_0 = 0) + 2\sqrt{n\lambda_j} I(\hat{\beta}_{0j} = 0). \]

Applying Lemma A.1 of Ruppert and Carroll (1980), it can be shown that $\sum_{i=1}^{n} |x_{ij}| I(y_i - x_i'\hat{\beta}_0 = 0) \to 0$ almost surely. By applying $\sqrt{n\lambda_j} \to 0$ when $1 \leq j \leq p_0$ of Assumption 2.4, it is clear that $n^{-1/2}H_j(0) \to 0$ almost surely when $1 \leq j \leq p_0$. Since

\[n^{-1/2}H_j(0) = -n^{-1/2} \sum_{i=1}^{n} x_{ij} \text{sgn}(y_i - x_i'\hat{\beta}_0) + \sqrt{n\lambda_j} \text{sgn}(\hat{\beta}_{0j}), \]

using $\sqrt{n\lambda_j} \to 0$ when $1 \leq j \leq p_0$ of Assumption 2.4 again, the result (10) is
Proof of Theorem 2.1:

Proof. For $\Delta \in \mathbb{R}^p$, define

$$M(\Delta) = n^{-1/2} \sum_{i=1}^{n} x_i \psi_{\tau}(\varepsilon_i - n^{-1/2} x_i' \Delta),$$

where $\psi_{\tau}(x) = \tau - I(x < 0)$.

Let $\hat{\Delta}_0 \triangleq (\hat{\Delta}_{\beta_0a}, \hat{\Delta}_{\beta_0b})'$. From Lemma 1, we know that $\hat{\Delta}_0 = O_p(1)$. Applying Lemma A.3 of Ruppert and Carroll (1980), we have

$$M(\hat{\Delta}_0) - M(0) + f(0)\Sigma_{xx} \hat{\Delta}_0 = o_p(1).$$

Using the definition of $M(\Delta)$, we have

$$n^{-1/2} \sum_{i=1}^{n} \begin{pmatrix} x_{ia} \\ x_{ib} \end{pmatrix} \psi_{\tau}(\varepsilon_i - n^{-1/2} x_i' \hat{\Delta}_0) - n^{-1/2} \sum_{i=1}^{n} \begin{pmatrix} x_{ia} \\ x_{ib} \end{pmatrix} \psi_{\tau}(\varepsilon_i) + f(0)\Sigma_{xx} \begin{pmatrix} \hat{\Delta}_{\beta_0a} \\ \hat{\Delta}_{\beta_0b} \end{pmatrix} = o_p(1),$$

which leads to

$$n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi_{\tau}(\varepsilon_i - n^{-1/2} x_i' \hat{\Delta}_0) - n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi_{\tau}(\varepsilon_i) + f(0)(\Sigma_{11} \hat{\Delta}_{\beta_0a} + \Sigma_{12} \hat{\Delta}_{\beta_0b}) = o_p(1).$$

Applying Lemma 1, it is obvious that $\hat{\Delta}_{\beta_0b} = o_p(1)$. Using Lemma 2, it shows that

$$n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi_{\tau}(\varepsilon_i - n^{-1/2} x_i' \hat{\Delta}_0) \to 0 \text{ almost surely},$$

then we have

$$f(0)\Sigma_{11} \hat{\Delta}_{\beta_0a} = n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi_{\tau}(\varepsilon_i) + o_p(1).$$

In L1-norm regression, $\tau = \frac{1}{2}$. So $\psi_{\tau}(\varepsilon_i) = \frac{1}{2} \text{sgn}(\varepsilon_i)$ when $\varepsilon_i \neq 0$. Thus, the Bahadur representation of $\hat{\Delta}_0$ in Theorem 2.1 has been proved. \hfill \square
Lemma 3. Under H_1, $\sqrt{n}(\hat{\beta}_a - \beta_a) = O_p(1)$, $\sqrt{n}(\hat{\gamma} - \gamma) = O_p(1)$ and $\hat{\beta}_b = 0$ with probability tending to 1.

Proof. Since we don’t use penalty on our interest parameter γ, so the tuning parameter for γ is zero, which satisfies the Assumption 2.4. The result follows from Lemma 1 and Lemma 2 of Wang, Li, and Jiang (2007).

Lemma 4. The sequence of solutions $(\hat{\beta}, \hat{\gamma})$ of (2) satisfies

$$n^{-1/2} \sum_{i=1}^{n} x_{ia} \text{sgn}(y_i - x_i'\hat{\beta} - z_i'\hat{\gamma}) \to 0 \text{ almost surely.} \tag{11}$$

and

$$n^{-1/2} \sum_{i=1}^{n} z_i \text{sgn}(y_i - x_i'\hat{\beta} - z_i'\hat{\gamma}) \to 0 \text{ almost surely.} \tag{12}$$

Proof. Let $\{e_j\}_{j=1}^{p}$ be the standard basis of R^p. Define

$$L_j(a) = \sum_{i=1}^{n} |y_i - x_i'(\hat{\beta} + ae_j) - z_i'\hat{\gamma}| + n\lambda_j|\hat{\beta}_j + a|,$$

and let $N_j(a)$ be the derivative of $L_j(a)$, so that

$$N_j(a) = -\sum_{i=1}^{n} x_{ij} \text{sgn}(y_i - x_i'(\hat{\beta} + ae_j) - z_i'\hat{\gamma}) + n\lambda_j \text{sgn}(\hat{\beta}_j + a).$$

Then result (11) follows from Lemma 2.

Let $\{u_k\}_{k=1}^{q}$ be the standard basis of R^q. Define

$$L_k^*(a) = \sum_{i=1}^{n} |y_i - x_i'(\hat{\beta} + au_k)|$$

and let $N_k^*(a)$ be the derivative of $L_k^*(a)$, so that

$$N_k^*(a) = -\sum_{i=1}^{n} z_{ik} \text{sgn}(y_i - x_i'(\hat{\beta} + au_k)).$$
The result (12) follows from Ruppert and Carroll (1980, proof of Lemma A.2).

Proof of Theorem 2:

Proof. For $\Delta \in R^{p+q}$, define

$$M(\Delta) = n^{-1/2} \sum_{i=1}^{n} w_i \psi'(\varepsilon_i - n^{-1/2} w_i^\prime \Delta).$$

Let $\hat{\Delta} \triangleq (\hat{\Delta}^\prime_{\beta_a}, \hat{\Delta}^\prime_{\beta_b}, \hat{\Delta}^\prime_{\gamma})'$. From Lemma 3, we know that $\hat{\Delta} = O_p(1)$. Applying Lemma A.3 of Ruppert and Carroll (1980), we have

$$M(\hat{\Delta}) - M(0) + f(0) \Sigma_{xz} \hat{\Delta} = o_p(1).$$

Using the definition of $M(\Delta)$ and simple algebra, we have

$$n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi'(\varepsilon_i - n^{-1/2} w_i^\prime \hat{\Delta}) - n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi'(\varepsilon_i) + f(0)(\Sigma_{11} \hat{\Delta}_{\beta_a} + \Sigma_{12} \hat{\Delta}_{\beta_b} + \Sigma_{13} \hat{\Delta}_{\gamma}) = o_p(1),$$

$$n^{-1/2} \sum_{i=1}^{n} z_i \psi'(\varepsilon_i - n^{-1/2} w_i^\prime \hat{\Delta}) - n^{-1/2} \sum_{i=1}^{n} z_i \psi'(\varepsilon_i) + f(0)(\Sigma_{31} \hat{\Delta}_{\beta_a} + \Sigma_{32} \hat{\Delta}_{\beta_b} + \Sigma_{33} \hat{\Delta}_{\gamma}) = o_p(1).$$

By applying Lemma 3, it is obvious that $\hat{\Delta}_{\beta_b} = o_p(1)$. Using Lemma 4, we can see that $n^{-1/2} \sum_{i=1}^{n} x_{ia} \psi'(\varepsilon_i - n^{-1/2} w_i^\prime \hat{\Delta}) \to 0$ almost surely and $n^{-1/2} \sum_{i=1}^{n} z_i \psi'(\varepsilon_i - n^{-1/2} w_i^\prime \hat{\Delta}) \to 0$ almost surely. So the above results can be simplified as

$$f(0) \Sigma \left(\begin{array}{c} \hat{\Delta}_{\beta_a} \\ \hat{\Delta}_{\gamma} \end{array} \right) = n^{-1/2} \sum_{i=1}^{n} \left(\begin{array}{c} x_{ia} \\ z_i \end{array} \right) \psi'(\varepsilon_i) + o_p(1),$$

which is equivalent as

$$\left(\begin{array}{c} \hat{\Delta}_{\beta_a} \\ \hat{\Delta}_{\gamma} \end{array} \right) = f(0)^{-1} \Sigma^{-1} n^{-1/2} \sum_{i=1}^{n} \left(\begin{array}{c} x_{ia} \\ z_i \end{array} \right) \psi'(\varepsilon_i) + o_p(1).$$
Using the definition of Σ^{-1} and $\psi_\tau(\varepsilon_i)$ when $\tau = \frac{1}{2}$, the Bahadur representation of $\hat{\Delta}$ in Theorem 2.2 has been proved. □
Lemma .5. According to the notations and assumptions in Section 2.1,

\[
\Sigma^{-1} = \begin{pmatrix}
\Sigma_{11}^{-1} + \Sigma_{11}^{-1} \Sigma_{13} B^{-1} \Sigma_{31} \Sigma_{11}^{-1} & -\Sigma_{11}^{-1} \Sigma_{13} B^{-1} \\
-B^{-1} \Sigma_{31} \Sigma_{11}^{-1} & B^{-1}
\end{pmatrix},
\]

where \(B = \Sigma_{33} - \Sigma_{31} \Sigma_{11}^{-1} \Sigma_{13} \), and provided \(\Sigma_{11}^{-1} \) and \(B^{-1} \) exist.

Proof. It is well known result by using simple matrix algebra. \(\square \)

Lemma .6.

\[
\hat{\Delta}_{\beta_0 a} = \hat{\Delta}_{\beta a} + \Sigma_{11}^{-1} \Sigma_{13} \hat{\Delta}_{\gamma}
\]

Proof. Define \(\xi_n = n^{-1/2} \sum_{i=1}^{n} x_i a sgn(\varepsilon_i), \xi_n^* = n^{-1/2} \sum_{i=1}^{n} z_i sgn(\varepsilon_i) \) and \(\eta_n = (\xi_n^*, \xi_n^*)' = n^{-1/2} \sum_{i=1}^{n} \begin{pmatrix} x_i a \\ z_i \end{pmatrix} sgn(\varepsilon_i) \). It is obvious to see that \(\xi_n \xrightarrow{d} N(0, \Sigma_{11}), \xi_n^* \xrightarrow{d} N(0, \Sigma_{33}) \) and \(\eta_n \xrightarrow{d} N(0, \Sigma) \). Applying the Bahadur representation of the LAD-lasso estimators in Theorem 2.1 and Theorem 2.2, then we have

\[
\hat{\Delta}_{\beta_0 a} = \frac{1}{2} f(0)^{-1} \Sigma_{11}^{-1} \xi_n + o_p(1), \quad (13)
\]

\[
\hat{\Delta}_{\beta a} = \frac{1}{2} f(0)^{-1} (\Sigma_{11}^1 \xi_n + \Sigma_{13}^1 \xi_n^*) + o_p(1), \quad (14)
\]

\[
\hat{\Delta}_{\gamma} = \frac{1}{2} f(0)^{-1} (\Sigma_{31} \xi_n + \Sigma_{33} \xi_n^*) + o_p(1). \quad (15)
\]

We can plug in the above equations to \(\hat{\Delta}_{\beta a} + \Sigma_{11}^{-1} \Sigma_{13} \hat{\Delta}_{\gamma} \), so

\[
\hat{\Delta}_{\beta a} + \Sigma_{11}^{-1} \Sigma_{13} \hat{\Delta}_{\gamma} = \frac{1}{2} f(0)^{-1} [\Sigma_{11}^1 \xi_n + \Sigma_{13}^1 \xi_n^* + \Sigma_{11}^{-1} \Sigma_{13} (\Sigma_{31} \xi_n + \Sigma_{33} \xi_n^*)] + o_p(1)
\]

\[
= \frac{1}{2} f(0)^{-1} [(\Sigma_{11}^1 + \Sigma_{11}^{-1} \Sigma_{13} \Sigma_{31}) \xi_n + (\Sigma_{13}^1 + \Sigma_{11}^{-1} \Sigma_{13} \Sigma_{33}) \xi_n^*] + o_p(1).
\]
Consider the two matrix before \(\xi_n \) and \(\xi_n^* \).

\[
\Sigma_{11}^2 + \Sigma_{11}^{-1}\Sigma_{13}\Sigma_{31} = \Sigma_{11}^{-1} + \Sigma_{11}^{-1}\Sigma_{13}B^{-1}\Sigma_{31}\Sigma_{11}^{-1} + \Sigma_{11}^{-1}\Sigma_{13}(-B^{-1}\Sigma_{31}\Sigma_{11}^{-1}) = \Sigma_{11}^{-1}
\]

\[
\Sigma_{13} + \Sigma_{11}^{-1}\Sigma_{13}\Sigma_{33} = -\Sigma_{11}^{-1}\Sigma_{13}B^{-1} + \Sigma_{11}^{-1}\Sigma_{13}B^{-1} = 0
\]

Plug them back in, so we have \(\hat{\Delta}_\beta + \Sigma_{11}^{-1}\Sigma_{13}\hat{\Delta}_\gamma = \frac{1}{2}f(0)^{-1}\Sigma_{11}^{-1}\xi_n + o_p(1) \), or the Lemma is proved.

\[\Box\]

Lemma 7. \(\text{RSS}_1^*/n = \sigma + o_p(1) \)

Proof. \(\text{RSS}_1^*/n = \frac{1}{n}\sum_{i=1}^{n} |y_i - x_i'\hat{\beta} - z_i'\hat{\gamma}| = \frac{1}{n}\sum_{i=1}^{n} |y_i - x_i'a\hat{\beta}_a - x_i'b\hat{\beta}_b - z_i'\hat{\gamma}| = \frac{1}{n}\sum_{i=1}^{n} |y_i - x_i'a\hat{\beta}_a - z_i'\hat{\gamma}| + o_p(1) = \frac{1}{n}\sum_{i=1}^{n} |\varepsilon_i - n^{-\frac{1}{2}}x_i'a\hat{\Delta}_\beta_a - n^{-\frac{1}{2}}z_i'\hat{\Delta}_\gamma| + o_p(1) \), since \(P(\hat{\beta}_b = 0) \to 1 \) as \(n \to \infty \).

Define \(\hat{\varepsilon}_i \triangleq \varepsilon_i - n^{-\frac{1}{2}}x_i'a\hat{\Delta}_\beta_a - n^{-\frac{1}{2}}z_i'\hat{\Delta}_\gamma \), and according to Law of Large Numbers,

\[
\text{RSS}_1^*/n \overset{p}{\to} E|\hat{\varepsilon}_i|.
\]

Let \(I \triangleq \sum_{i=1}^{n} (|\varepsilon_i - n^{-\frac{1}{2}}x_i'a\hat{\Delta}_\beta_a - n^{-\frac{1}{2}}z_i'\hat{\Delta}_\gamma| - |\varepsilon_i|) \).

According to Wang, Li, Jiang (2007), it holds that

\[
I = -\eta_n' \begin{pmatrix} \hat{\Delta}_\beta_a \\ \hat{\Delta}_\gamma \end{pmatrix} + f(0)(\hat{\Delta}'_\beta_a, \hat{\Delta}'_\gamma)\Sigma \begin{pmatrix} \hat{\Delta}_\beta_a \\ \hat{\Delta}_\gamma \end{pmatrix} + o_p(1). \tag{16}
\]

According to Equation (14) and (15), we have

\[
\begin{pmatrix} \hat{\Delta}_\beta_a \\ \hat{\Delta}_\gamma \end{pmatrix} = \frac{1}{2}f(0)^{-1}\Sigma^{-1}\eta_n + o_p(1). \tag{17}
\]

Plug in (17) back to (16), we can get \(I = -\frac{1}{4f(0)}\eta_n'\Sigma^{-1}\eta_n + o_p(1) \). Since \(\eta_n \overset{d}{\to} N(0, \Sigma) \), then \(\eta_n'\Sigma^{-1}\eta_n \overset{d}{\to} \chi^2_{p_0+q} \). Thus, \(I \overset{d}{\to} -\frac{1}{4f(0)}\chi^2_{p_0+q} \Rightarrow I = O_p(1) \Rightarrow I/n = o_p(1) \).
According to the definition of I and the Law of Large Numbers, $I/n \xrightarrow{p} E[\hat{\varepsilon}_i] - E[\varepsilon_i]$. Thus, $E[\hat{\varepsilon}_i] = E[\varepsilon_i] + o_p(1) \Rightarrow RSS^*_i/n = E[\varepsilon_i] + o_p(1) = \sigma + o_p(1)$. □

Lemma 8. $\hat{\Delta}_\gamma \xrightarrow{d} N(0, \frac{1}{4f(0)^2}B^{-1})$

Proof. According to Equation (15), $\hat{\Delta}_\gamma = \frac{1}{2} f(0)^{-1}(\Sigma^{31}, \Sigma^{33})\eta_n + o_p(1)$ where $\eta_n \xrightarrow{d} N(0, \Sigma)$. In order to calculate the variance of $\hat{\Delta}_\gamma$, we need to calculate $(\Sigma^{31}, \Sigma^{33})(\Sigma^{31}, \Sigma^{33})'$. According to Lemma 5, it can be shown that $(\Sigma^{31}, \Sigma^{33})(\Sigma^{31}, \Sigma^{33})' = B^{-1}$. Thus $\hat{\Delta}_\gamma \xrightarrow{d} N(0, \frac{1}{4f(0)^2}B^{-1})$. □

Proof of Theorem 2.3

Proof. Consider $\frac{RSS^*_0 - RSS^*_1}{2}$ under H_0.

$$\frac{RSS^*_0 - RSS^*_1}{2} = \frac{1}{2} \sum_{i=1}^{n}(|y_i - x'_i \hat{\beta}_a - z'_i \gamma_0| - |y_i - x'_i \hat{\beta}_a - x'_ib \hat{\beta}_b - z'_i \hat{\gamma}|) = \frac{1}{2} \sum_{i=1}^{n}(|y_i - x'_i \hat{\beta}_a - x'_ib \hat{\beta}_b - z'_i \hat{\gamma}| - |y_i - x'_i \hat{\beta}_a - z'_i \gamma_0|) + o_p(1),$$

since $P(\hat{\beta}_b = 0) \to 1$ and $P(\hat{\beta}_b = 0) \to 1$ as $n \to \infty$.

$$\frac{RSS^*_0 - RSS^*_1}{2} = \frac{1}{2} \sum_{i=1}^{n}(|\varepsilon_i - n^{-\frac{1}{2}} x'_{ia} \hat{\Delta}_{\beta a}| - |\varepsilon_i - n^{-\frac{1}{2}} x'_{ia} \hat{\Delta}_{\beta a} - n^{-\frac{1}{2}} z'_i \hat{\Delta}_\gamma|) = \frac{1}{2} \sum_{i=1}^{n}(|\varepsilon_i - n^{-\frac{1}{2}} x'_{ia} \hat{\Delta}_{\beta a}| - |\varepsilon_i|) - \frac{1}{2} \sum_{i=1}^{n}(|\varepsilon_i - n^{-\frac{1}{2}} x'_{ia} \hat{\Delta}_{\beta a} - n^{-\frac{1}{2}} z'_i \hat{\Delta}_\gamma| - |\varepsilon_i|) = I_1 - I_2.$$

According to Wang, Li, Jiang (2007),

$$I_1 = \sum_{i=1}^{n}(|\varepsilon_i - n^{-\frac{1}{2}} x'_{ia} \hat{\Delta}_{\beta a}| - |\varepsilon_i|) = -\xi'_n \hat{\Delta}_{\beta a} + f(0) \hat{\Delta}_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a} + o_p(1). \quad (18)$$

$$I_2 = \sum_{i=1}^{n}(|\varepsilon_i - n^{-\frac{1}{2}} x'_{ia} \hat{\Delta}_{\beta a} - n^{-\frac{1}{2}} z'_i \hat{\Delta}_\gamma| - |\varepsilon_i|) = -\eta'_n (\hat{\Delta}'_{\beta a}, \hat{\Delta}_\gamma) + f(0) (\hat{\Delta}'_{\beta a}, \hat{\Delta}_\gamma) \Sigma (\hat{\Delta}'_{\beta a}, \hat{\Delta}_\gamma)' + o_p(1). \quad (19)$$

From Equation (13), we can get

$$\xi_n = 2f(0) \Sigma_{11} \hat{\Delta}_{\beta a} + o_p(1) \quad (20)$$
From Equation (17), we can get

$$\eta_n = 2f(0)\Sigma(\hat{\Delta}_{\beta a}^*, \hat{\Delta}_{\gamma}^*)' + o_p(1)$$ \hspace{1cm} (21)$$

Plug Equation (20) and (21) back to (18) and (19), then we have

$$I_1 = -f(0)\hat{\Delta}'_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a} + o_p(1), \text{ and } I_2 = -f(0)(\hat{\Delta}'_{\beta a}, \hat{\Delta}'_{\gamma}) \Sigma(\hat{\Delta}'_{\beta a}, \hat{\Delta}_{\gamma}^*)' + o_p(1).$$

$$I_1 - I_2 = f(0)(\hat{\Delta}'_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a} + \hat{\Delta}_{\gamma}^* \Sigma_{31} \hat{\Delta}_{\beta a} + \hat{\Delta}'_{\beta a} \Sigma_{13} \hat{\Delta}_{\gamma} + \hat{\Delta}_{\gamma}^* \Sigma_{33} \hat{\Delta}_{\gamma} - \hat{\Delta}'_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a}) + o_p(1).$$

Applying Lemma 6, we can get

$$\hat{\Delta}_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a} = \hat{\Delta}_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a} + \hat{\Delta}_{\gamma}^* \Sigma_{31} \hat{\Delta}_{\beta a} + \hat{\Delta}'_{\beta a} \Sigma_{13} \hat{\Delta}_{\gamma} + \hat{\Delta}_{\gamma}^* \Sigma_{33} \hat{\Delta}_{\gamma} - \hat{\Delta}'_{\beta a} \Sigma_{11} \hat{\Delta}_{\beta a},$$

$$I_1 - I_2 = f(0)(\hat{\Delta}'_{\beta a} (\Sigma_{33} - \Sigma_{31} \Sigma_{11} \Sigma_{13}) \hat{\Delta}_{\gamma} + o_p(1) = f(0)\hat{\Delta}'_{\beta a} B \hat{\Delta}_{\gamma} + o_p(1).$$

Applying Lemma 7, we can get $T_n = \frac{I_1 - I_2}{2\sigma} + o_p(1)$ under H_0. And by using Lemma 8, we can get $I_1 - I_2 \overset{d}{\rightarrow} \frac{1}{4f(0)} \chi^2_q$. Thus, $T_n \overset{d}{\rightarrow} \frac{1}{8f(0)} \chi^2_q$ under H_0. \hfill \Box

Proof of Theorem 2.4

Proof. Consider $\frac{RSS_0 - RSS_1}{2}$ under H_{1n}.

$$\frac{RSS_0 - RSS_1}{2} = \frac{1}{2} \sum_{i=1}^{n} (|y_i - x'_i \hat{\beta}_0 - z'_i \gamma| - |y_i - x'_i \hat{\beta}_0 - x'_i \hat{\beta}_0 - z'_i \gamma|) = \frac{1}{2} \sum_{i=1}^{n} (|y_i - x'_i \hat{\beta}_0 - x'_i \hat{\beta}_0 - z'_i \gamma| - |y_i - x'_i \hat{\beta}_0 - z'_i \gamma| + o_p(1), \text{ since } P(\hat{\beta}_0 = 0) \rightarrow 1 \text{ and } P(\hat{\beta}_0 = 0) \rightarrow 1 \text{ as } n \rightarrow \infty.$$

$$\frac{RSS_0 - RSS_1}{2} = \frac{1}{2} \sum_{i=1}^{n} (|\varepsilon_i - n^{-\frac{1}{2}} x'_i \hat{\Delta}_{\beta a} + n^{-r} z'_i \Delta_{\gamma}| - |\varepsilon_i - n^{-\frac{1}{2}} x'_i \hat{\Delta}_{\beta a} + n^{-r} z'_i \Delta_{\gamma}| = \frac{1}{2} \sum_{i=1}^{n} (|\varepsilon_i - n^{-\frac{1}{2}} x'_i \hat{\Delta}_{\beta a} + n^{-r} z'_i \Delta_{\gamma}| - |\varepsilon_i|) \rightarrow \frac{1}{2} \sum_{i=1}^{n} (|\varepsilon_i - n^{-\frac{1}{2}} x'_i \hat{\Delta}_{\beta a} + n^{-r} z'_i \Delta_{\gamma}| - |\varepsilon_i|) = I_3 - I_4. \hfill \Box$$
According to Wang, Li, Jiang (2007),

\[I_3 = \sum_{i=1}^{n} (|\varepsilon_i - n^{-\frac{1}{2}} x_i' \Delta_{\beta a} + n^{-r} z_i' \Delta_{\gamma}| - |\varepsilon_i|) \]

\[= -n' \Delta_{\beta a} - n^{1/2-r} \Delta_{\gamma}' + f(0) \Delta_{\beta a} - n^{1/2-r} \Delta_{\gamma}' \Sigma \Delta_{\beta a} - n^{1/2-r} \Delta_{\gamma}' + o_p(1). \]

\[I_4 = \sum_{i=1}^{n} (|\varepsilon_i - n^{-\frac{1}{2}} x_i' \Delta_{\beta a} - n^{-r} z_i' \Delta_{\gamma}| - |\varepsilon_i|) = -n' \Delta_{\beta a} + f(0) \Delta_{\beta a} \Sigma \Delta_{\beta a} \Delta_{\gamma}' + o_p(1). \]

By using Equation (21), we can get

\[I_3 = -2f(0) \Delta_{\beta a} \Sigma \Delta_{\beta a} - n^{1/2-r} \Delta_{\gamma}' + f(0) \Delta_{\beta a} + n^{1/2-r} \Delta_{\gamma}' \Sigma \Delta_{\beta a} - n^{1/2-r} \Delta_{\gamma}' + o_p(1), \]

\[I_4 = -f(0) \Delta_{\beta a} \Sigma \Delta_{\beta a} + o_p(1), \]

Replacing \(\hat{\Delta}_{\beta a} \) with \(\hat{\Delta}_{\beta a} \) and \(\hat{\Delta}_{\gamma} \) by using Lemma 6, we can get

\[I_3 - I_4 = f(0) \Delta_{\gamma} B \Delta_{\gamma} + 2f(0) n^{1/2-r} \Delta_{\gamma} B \Delta_{\gamma} + f(0) n^{1/2-r} \Delta_{\gamma} \Sigma \Delta_{\gamma} + o_p(1) \]

\[= f(0) \Delta_{\gamma} + n^{1/2-r} \Delta_{\gamma} B \Delta_{\gamma} + f(0) n^{1/2-r} \Delta_{\gamma} \Sigma \Delta_{\gamma} + o_p(1) \]

\[= I_3^* + I_4^* + o_p(1). \]

From Lemma 8 we can see that \(\hat{\Delta}_{\gamma} + n^{1/2-r} \Delta_{\gamma} \overset{d}{\rightarrow} N(n^{1/2-r} \Delta_{\gamma}, \frac{1}{4f(0)^2} B^{-1}) \) which leads to \(I_3^* \overset{d}{\rightarrow} \frac{1}{4f(0)^2} \chi_4^2(\rho^2) \) where the non-centrality parameter \(\rho^2 = 4f(0)^2 n^{1/2} \Delta_{\gamma} B \Delta_{\gamma} \).

\(I_4^* \rightarrow \infty \) as \(n \rightarrow \infty \) when \(r < 1/2 \). By Slutsky’s Theorem and Lemma 7, we can get

\[T_n \overset{d}{\rightarrow} \frac{I_3^* + I_4^*}{2\sigma} \] under \(H_1 \).

\[P(T_n > \frac{1}{8f(0)^2} \chi_{q,1-\alpha}^2 | H_{1n}) \rightarrow 1 \] where \(\chi_{q,1-\alpha}^2 \) is the \((1-\alpha)\)th quantile of \(\chi_4^2 \) if \(r < 1/2 \).

Proof of Theorem 2.5
Proof. According to the proof of Theorem 3.4, if \(r = 1/2 \), we have

\[
I_3 - I_4 = f(0)\hat{\Delta}'_\gamma B\hat{\Delta}_\gamma + 2f(0)\Delta'_\gamma B\hat{\Delta}_\gamma + f(0)\Delta'_\gamma \Sigma_{33}\Delta_\gamma + o_p(1)
\]

\[
= f(0)(\hat{\Delta}_\gamma + \Delta_\gamma)'B(\hat{\Delta}_\gamma + \Delta_\gamma) + f(0)\Delta'_\gamma \Sigma_{31}\Sigma_{11}^{-1}\Sigma_{13}\Delta_\gamma + o_p(1)
\]

\[
= I_3^* + I_4^* + o_p(1).
\]

Then \(I_3^* \xrightarrow{d} \frac{1}{4f(0)}\chi^2_\nu(\rho^2) \) where the non-centrality parameter \(\rho^2 = 4f(0)^2\Delta'_\gamma B\Delta_\gamma \).

Thus, by Slutsky’s Theorem and Lemma 7, \(T_n \xrightarrow{d} \frac{1}{8f(0)\sigma^2}\chi^2_\nu(\rho^2) + C^2 \) where \(C^2 = \frac{f(0)}{2\sigma} \Delta'_\gamma \Sigma_{31}\Sigma_{11}^{-1}\Sigma_{13}\Delta_\gamma \) under \(H_1 \).