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Abstract. Knotted structures are commonly found in circular DNA and along
the backbone of certain proteins. In order to properly estimate properties of these
three dimensional structures it is often necessary to generate large ensembles
of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons
are called equilateral random polygons). However finding efficient algorithms
that properly sample the space of equilateral random polygons is a difficult
problem. Currently there are no proven algorithms that generate equilateral
random polygons with its theoretical distribution. In this paper we propose a
method that generates equilateral random polygons in a “step-wise uniform” way.
We prove that this method is ergodic in the sense that any given equilateral
random polygon can be generated by this method and we show that the time
needed to generate an equilateral random polygon of length n is linear in terms of
n. These two properties make this algorithm a big improvement over the existing
generating methods. Detailed numerical comparisons of our algorithm with other
widely used algorithms are provided.
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1. Introduction

Knots and links (i.e. interlocked rings) are commonly found in nucleic acids and
proteins. DNA knots and links appear as the product of random cyclization reactions
of DNA molecules in solution [43, 46] and in confinement [2], as products of enzyme
mediated biochemical reactions such as those mediated by site-specific recombinases
[6, 8, 9, 44, 51], topoisomerases [7, 10, 22, 55] and condensins [25, 40, 49] and as
nanotechnological devices [35, 45]. Furthermore they are also found in some biological
systemssuch as some bacterial and plant viruses [3, 31] and bacteria harvoring
mutations in their topoisomerases [47]. On the other hand, links are found in
newly replicated bacterial chromosomes [21] as well as in mitochondrial DNA from
trypanosomes (reviewed in [28]). Knots and links are also found along the backbone
of some proteins. Recent studies of some protein crystal structures from viruses [57],
bacteria [26] and humans [52] have revealed knotted structures in a wide variety of
enzymes such as RNA methyltransferases [38], kinases [57] and transmembrane protein
[26]. Knots have posed a new paradigm in protein folding and may have important
functional and evolutionary implications [29, 30, 50, 52]. A few examples of linked
protein rings have been reported and they are believed to provide stability to the
complex they are part of. These include the proteins that form the capsid of certain
viruses (e.g. [56]), proteins in thermofilic organisms [5] as well as some engineered
proteins [4].

In order to analyze and understand these biological data it is often necessary
to generate large ensembles of simulated and non-correlated circular molecules
[1, 3, 27, 29, 34, 52, 54], therefore fast and reliable algorithms to generate non-
correlated random polygons are needed.

The simplest representation of a circular molecule is by a closed equilateral
random walk in 3-space (beginning at the origin) with n edges (length n) [19, 20],
where each edge represents one or more monomers [32]. There are a few algorithms
that generate ensembles of such closed equilateral random walks. These include the
crankshaft algorithm [27, 36] and the hedgehog algorithm [27, 41]. In the crankshaft
algorithm, one starts from the regular n-gon (with unit edge length) in the plane. At
any given step, two points in the polygon are selected at random. These two points
define an axis that separates the polygon into two chains. One of the chains is selected
at random and rotated around the axis by a random angle (the segments are allowed
to cross each other in this process). The advantage of this method is that it has been
shown to be ergodic [36]. That is, any possible configuration of an equilateral random
polygon can be generated by this method. However, due to the high correlations of
the edges generated this way, the above rotation process must be repeated O(n) times
to effectively eliminate any obvious correlation. Consequently, the run time needed
for this algorithm to generate an equilateral random polygon of length n is on the
order of O(n2). The hedgehog algorithm (described later), on the other hand, is faster
(with a run time of O(n) for generating an equilateral random polygon of length n),
but it is unknown whether it is ergodic.

In this paper, we propose a new method for generating equilateral random
polygons that is ergodic and fast. In Section 2 we give the formal definition of
equilateral random polygons and provide a brief list of known theoretical results on
equilateral random polygons. These results will be used to verify our numerical results
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in Section 5. In Section 3 we give a detailed description of our new algorithm. We
then provide a proof that this algorithm is ergodic and that the computation time
increases linearly with the length of the polygon (Section 4). In Section 5 we provide
numerical results obtained using our new generating algorithm and compare them
with the corresponding theoretical results or results obtained using the crankshaft
algorithm. While we are not able to prove that our method samples the space of
equilateral polygons uniformly and the polygons generated are non-correlated,

2. Basic facts about equilateral random polygons

Let us formally define the equilateral random polygons first. Suppose Y1, Y2, ...
, Yn are n independent random vectors uniformly distributed on S2 (so the joint
probability density function of the three coordinates of each Yj is simply 1

4π on the
unit sphere and 0 otherwise). An equilateral random walk of n steps, denoted by
EWn, is defined as the sequence of points in the three dimensional space R3: X0 = O,
Xk = Y1 + Y2 + · · · + Yk, k = 1, 2, ..., n. Each Xk is called a vertex of the EWn

and the line segment joining Xk and Xk+1 is called an edge of EWn (which is of
unit length). If the last vertex Xn of EWn is fixed, then we have a conditioned
random walk EWn|Xn. In particular, EWn becomes a polygon if Xn = O. In
this case, it is called an equilateral random polygon and is denoted by EPn. The
joint probability density function f(X1, X2, ..., Xn) of the vertices of an EWn is
f(X1, X2, ..., Xn) = ϕ(U1)ϕ(U2) · · ·ϕ(Un) = ϕ(X1)ϕ(X2 −X1) · · ·ϕ(Xn −Xn−1).

Let Xk be the k-th vertex of an EWn (n ≥ k > 1), its density function fk(Xk) is
defined by the integral∫

ϕ(X1)ϕ(X2 −X1) · · ·ϕ(Xk −Xk−1)dX1dX2 · · · dXk−1 (1)

and has the closed form fk(Xk) = 1
2π2r

∫∞
0

x sin rx
(

sin x
x

)k
dx [42]. In the case of EPn,

the density function of the vertex Xk can be approximated by a Gaussian distribution,
as given in the following theorem.

Theorem 1 [13, 16, 17] Let Xk be the k-th vertex of an EPn and let hk be its density
function, then

hk(Xk) ≈
(√

3
2πσ2

nk

)3

exp
(
−3|Xk|2

2σ2
nk

)
, (2)

where σ2
nk = k(n−k)

n and the error of the estimation is at most of the order of

O
(

1
k5/2 + 1

(n−k)5/2

)
.

This tells us that the distribution of Xk of an EPn is approximately Gaussian.
From this theorem one can then derive some important results concerning equilateral
random polygons which can be used to check how likely a generating algorithm is
producing equilateral random polygons with the correct distributions. One such result
is listed in the following corollary.
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Corollary 1 Assume that n = 2k is even and let r = |Xk|, which is the distance
between the origin and the middle vertex Xk of the polygon. Then r has an estimated
probability density function

g′(r) ≈ 4πr2

(√
6

πn

)3

exp
(
−6r2

n

)
. (3)

In particular, the mean of r is approximately
√

2n/3π.

From Theorem 1 it is also fairly easy to see that the mean square radius of gyration
for EPn is on the order O(n). Another quantity we will use for checking the validity of
our algorithm is the mean ACN of EPn, which is defined as the following. If we project
an EPn onto a plane along a given direction, we can count the number of crossings
that are visible in this particular projection. To be independent of the choice of a
particular projection, we average these crossing numbers over all projections and the
number so obtained is called the average crossing number (ACN). In fact, ACN is an
important quantity since it is a natural geometric measure of polymer entanglement
as it refers to the actual number of crossings that can be perceived while observing a
non-perturbed trajectory of a given polymer or DNA [24]. The following result reveals
the asymptotic behavior of the mean ACN. Almost perfect matching numerical results
were given in the same paper containing this result.

Theorem 2 [14] Let χn be the ACN of an equilateral random walk of n steps; then

E(χn) =
3
16

n ln n + O(n).

On the other hand, Theorem 1 also enables us to obtain theoretical results
regarding the topological aspects of EPn such as the following theorem, which have
been confirmed by many independently carried out simulations.

Theorem 3 [13] Let K be any knot type, then there exists a positive constant ε
such that EPn contains K as a connected sum component with a probability at least
1− exp(−nε), provided that n is large enough.

These theoretical results, as well as those well-documented numerical results
obtained using the existing generating methods, provide a solid background for us
to examine the validity of our new method.

3. The generalized hedgehog method

In this section we give a detailed description of the generalized hedgehog method, a
new algorithm for generating the equilateral random polygons.

3.1. Single and double rotation operations

Two operations are needed in the generalized hedgehog method. The first one, called
a single rotation, is used in the original hedgehog method. We provide it here for the
convenience of our reader.
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Figure 1. A single rotation involving two unit vectors.

Definition 1 Given two unit vectors ~r1 and ~r2, a single rotation involving ~r1 and ~r2

is a rotation of ~r1 and ~r2 around the axis ~r = ~r1 + ~r2 such that the rotation angle is
uniformly chosen between 0 and 2π. This rotation can be viewed in two ways as shown
in Figure 1.

Let ~r1, ~r2 and ~r3 be three unit vectors (here we consider all vectors as rooted at the
original point O). Let ~r1 = −−→

OX, ~r1 +~r2 = −−→
OY and ~r1 +~r2 +~r3 = −→

OZ. In the following
we describe a procedure that replaces ~r1, ~r2 and ~r3 with three new unit vectors ~r′1, ~r′2
and ~r′3 such that ~r1 +~r2 +~r3 = ~r′1 + ~r′2 + ~r′3. Let ~r′1, ~r′2 and ~r′3 be three unit vectors
such that ~r′1 + ~r′2 + ~r′3 = ~r (keep in mind that ~r = −→

OZ = ~r1 +~r2 +~r3 is a fixed vector
in this process). The end points of the vectors ~r′1, ~r′1 + ~r′2 and ~r′1 + ~r′2 + ~r′3(= ~r)
define a 4-sided polygon with side lengths 1, 1, 1 and r = |~r| = |−→OZ|. In the case that
~r′1 = ~r′2, we obtain a triangle of side lengths 1, 2 and r as shown in Figure 2.

0θ 1

r

2

Figure 2. The triangle that defines the maximum angle θ0 for θ.

In this case, the angle θ0 between the vector ~r and ~r′3 is given by the following
formula

θ0 =

{
cos−1

(
r2−3
2r

)
, r > 1

π, r ≤ 1,

Notice that in general, the angle θ between ~r and ~r′3 is less than or equal to
θ0. We will now choose a point Y ′ uniformly on the spherical region defined by
{U ∈ S(Z) : θ ≤ θ0}, where S(Z) is the unit sphere centered at Z and θ is the smaller
angle between −→ZO and −→ZU . Let ~r′3 = −→

OZ −−−→OY ′. Now S(O) and S(Y ′) intersect in a
circle and we will choose a point X ′ on it uniformly. See Figure 3 for an illustration
of this process.

Finally, we define ~r′1 =
−−→
OX ′ and ~r′2 =

−−→
OY ′ − −−→

OX ′. Thus we have replaced
the three unit vectors ~r1, ~r2 and ~r3 with ~r′1, ~r′2 and ~r′3. We call this operation
a double rotation of the vectors ~r1, ~r2 and ~r3. Let us emphasize that a double
rotation involving ~r1, ~r2 and ~r3 does not change their sum ~r1 + ~r2 + ~r3 since
~r1 + ~r′1 + ~r′3 =

−−→
OX ′ + (

−−→
OY ′ −−−→OX ′) + (−→OZ −−−→OY ′) = −→

OZ.
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Figure 3. The determination of Y ′ and X′.

3.2. The algorithm

We will now describe the algorithm to be used to generate a random equilateral
polygon of length n. Depending on n is odd or even, the first step is slightly different.

Step 11. If n is odd, then we will generate a random unit vector ~r1 uniformly
over the unit sphere starting from the origin O. Let the end point of ~r1 be X. We
then generate a random unit vector ~r2 starting from X by choosing its ending point
Y uniformly on the unit circle which is the intersection of the two unit sphere S(O)
and S(X). Finally we let ~r3 = −−→

Y O. This gives us a random equilateral polygon of
length 3 since ~r1 + ~r2 + ~r3 = ~0.

Step 12. If n is even, then we first randomly choose two unit vectors ~r1, ~r2

uniformly on the unit sphere S(O) and perform a single rotation involving ~r1 and ~r2.
Combining the two resulting vectors with ~r3 = −~r1 and ~r4 = −~r2 gives us a random
equilateral polygon of length 4. Let us name the resulting vectors still with the names
~r1 to ~r4.

Step 2. Randomly generate a unit vector ~r (uniformly on the unit sphere).
Randomly choose two vectors ~r′ and ~r′′ from the previous list and replace them with
−~r and the three vectors resulted from a double rotation on ~r, ~r′ and ~r′′. By the
nature of the double rotation, the sum of all the vectors in the list is always the zero
vector at any step. This step adds two vectors and the result is an equilateral polygon
of 4 or 5 edges.

Step 2 may now be repeated and at step k we arrive at a list of either n = 2k + 1
or n = 2k + 2 unit vectors, depending on what we did at step 1. The list is then
randomly shuffled. By a misuse of notation, let us again name the vectors in the final
list as ~r1, ~r2, ..., ~rn. Now the line segments joining the end points of ~r1, ~r1 + ~r2, ...,
~r1 + ~r2 + · · ·+ ~rn = ~O define an equilateral polygon of n edges.

4. The ergodicity of the generalized hedgehog algorithm

In this section, we show that the generalized hedgehog method introduced in the last
section is ergodic. That is, for any given equilateral polygon Pn of length n, there exist
a set of n unit vectors ~r1, ~r2, ..., ~rn such that Pn can be obtained by performing the
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algorithm described in the last section on these vectors. First, we need the following
lemma.

Lemma 1 Let ~r1, ~r2, ..., ~rn be any n ≥ 4 unit vectors such that
~r1 + ~r2 + · · · + ~rn = ~0, then there exist four distinct positive integers k1, k2, k3,

k4 between 1 and n such that |~rk1 + ~rk2 + ~rk3 + ~rk4 | < 2.

Proof. Assume the contrary, then for any distinct integers k1, k2, k3, k4 between 1
and n, we have |~rk1 +~rk2 +~rk3 +~rk4 | ≥ 2. Let ~rj = (xj , yj , zj). By the given condition,
we have

x2
j + y2

j + z2
j = 1

for each 1 ≤ j ≤ n and

n∑

j=1

xj = 0,

n∑

j=1

yj = 0,

n∑

j=1

zj = 0.

Square both sides of the above equations and sum over the results, we obtain

n +
∑

i 6=j

(xixj + yiyj + zizj) = 0.

Therefore,
∑

i 6=j

(xixj + yiyj + zizj) = −n < 0. (4)

On the other hand, since |~rk1 + ~rk2 + ~rk3 + ~rk4 | ≥ 2, we have

(xk1 + xk2 + xk3 + xk4)
2

+ (yk1 + xk2 + yk3 + yk4)
2

+ (zk1 + zk2 + zk3 + zk4)
2 ≥ 4.

This implies that

(xk1xk2 + xk1xk3 + xk1xk4 + xk2xk3 + xk2xk4 + xk3xk4)
+ (yk1yk2 + yk1yk3 + yk1yk4 + yk2yk3 + yk2yk4 + yk3yk4)
+ (zk1zk2 + zk1zk3 + zk1zk4 + zk2zk3 + zk2zk4 + zk3zk4) ≥ 0.

Sum both sides of the above inequality for all possible k1, k2, k3 and k4, we obtain
∑

i6=j

(xixj + yiyj + zizj) ≥ 0,

which contradicts (4).

We are now ready to prove the following ergodicity theorem.

Theorem 4 The generalized hedgehog method is ergodic, that is, any configuration of
an equilateral polygon of n edges can be constructed from this algorithm.
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Figure 4. The case of a polygon with 4 edges

Proof. For the simple case of n = 3, there is nothing to prove since any random
equilateral random polygon of length can be uniformly selected at Step 1 in our
algorithm. If P is an equilateral polygon of length 4, we can perform a single rotation
to put all four vectors in the same plane as shown in Figure 4. Apparently, these are
two pairs of opposite vectors ~r1, −~r1, ~r2 and −~r2. In other words, P can be obtained
by choosing ~r1 and ~r2 first, followed by a single rotation involving ~r1 and ~r2 and finally
combining the resulting vectors with ~r3 = −~r1 and ~r4 = −~r2.

Let us now assume that we have proven for any equilateral polygon Pk of length
k such that 3 ≤ k ≤ n − 1, there exists k unit vectors ~r1, ~r2, ..., ~rk such that Pk

can be obtained by the generalized hedgehog algorithm involving these vectors, where
n−1 ≥ 4. We will now consider an equilateral polygon Pn of length n. Notice that Pn

is defined by n consecutive unit vectors ~r1, ~r2, ..., ~rn such that ~r1 + ~r2 + · · ·+ ~rn = ~0.
By Lemma 1, there exist four distinct integers k1, k2, k3 and k4 between 1 and n such
that |~rk1 + ~rk2 + ~rk3 + ~rk4 | < 2. Without loss of generality (since we are allowed to
shuffle the order of the vectors in the algorithm), let us assume that k1 = 1, k2 = 2,
k3 = 3 and k4 = 4. That is, |~r1 + ~r2 + ~r3 + ~r4| < 2. Let U be the end point of
~r1 +~r2 +~r3 +~r4, Z be the end point of ~r1 +~r2 +~r3, Y be the end point of ~r1 +~r2 and
X be the end point of ~r1, as shown in Figure 5.
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Figure 5. Creating the opposite pair

We will now perform a double rotation such that the resulting ~r′1 = −~r4. We
see that this can be done since OU = X ′Z < 2, as shown in Figure 5. Let us name
the resulting vectors ~r′1, ~r′2 and ~r′3 respectively. Apparently, eliminating ~r′1 and ~r4

will give us an equilateral polygon Pn−2 of length n − 2. In other words, Pn can be
obtained by selecting ~r′1 first, then performing a double rotation involving ~r′1, ~r′2
and ~r′3 (the latter two are edges of Pn−2), followed by adding in the vector ~r4 = −~r′1.
By our assumption, Pn−2 can be obtained by the algorithm. Thus Pn can also be
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obtained by the algorithm.

5. Run time consideration and numerical comparisons with existing
methods

In order to validate our algorithm we first tested the computational time that needed
to generate a sample of 50,000 polygons. Next we analyzed distributions of geometrical
and topological properties commonly associated to closed circular molecules. These
include the three dimensional distribution the of points on the polygon, the radius
of gyration, the knotting probability and the mean average crossing number. In all
experiments described below 100,000 polygons were generated for each polygon size
and sizes ranged from 20 to 1000 in increments of 20.The quantities described were
calculated for each molecule and averaged over all the samples.

• Run time determination and comparison

First we confirmed that the time complexity of the algorithm is linear with the
length of the polygon (see Section 3). The following figure summarizes our result. It
shows that the time needed to generate an equilateral random polygon of length n
following y = 0.31n−1.030. By comparison, the time needed to generate an equilateral
random polygon of length n using the crankshaft method shows a growth rate of at
least O(n2).

Figure 6. Linear running time: The x-axis represents the length of the polygon
and the y-axis the time (in seconds) needed by the algorithm to generate 50,000
polygons.

• Distributions

First we investigated the average spatial distribution occupied by the points in
the polygons generated by our algorithm. We computed the average distance from
the k-th vertex (of an equilateral random polygon of length n) to the origin (the 0-th
vertex) with varying k values. In this calculation we expect that the average distance
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from the middle vertex Xn/2 of an equilateral random polygon of length n to the origin
to be the maximum among the k values. Furthermore, according to Corollary 1, this
average distance is estimated by ≈

√
2n/3π. Figure 7 below shows the distribution

of distances for different points along the polygon. The solid dots in the figure are
from the plot of the function ≈

√
2n/3π. Since the peak of each curve represents the

average distance from the middle vertex to the origin, a good fit means that the dots
should be at or near the peaks. This is clearly seen from the figure. Such a nice fit
certainly suggests that the random polygons generated using our method are following
the theoretical distribution in terms of the vertex to vertex distances. It also shows
that ≈

√
2n/3π is a very good estimator of the average distance from the middle

vertex to the origin.

Figure 7. Average vertex distance distribution from first vertex. The x-axis
represents the vertex with in the polygon from which we calculated the distance
to any other vertex. The y-axis represents the average distance calculated. A χ2

goodness of fit test with df = 49 yields a χ2 value of 0.0504, indicating a near
perfect fit.
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In an independent numerical study, we generated 10,000 equilateral random
polygons of length 200, 400, 1000 and 2000 each and computed the distance between
the origin and their middle point vertex (namely X100, X200, X500 and X1000

respectively). We then carried out a kernel estimation for the probability density
function of this distance. Recall from Corollary 1 that this probability density function

can be estimated by g′(r) ≈ 4πr2
(√

6
πn

)3

exp
(
− 6r2

n

)
. Figure 8 shows the plots of the

numerical pdfs obtained by the kernel estimation as well as the plots of the theoretical

curve 4πr2
(√

6
πn

)3

exp
(
− 6r2

n

)
for the cases of n = 200, 400, 1000 and 2000. Again,

the nice fits in these numerical studies strongly suggest that the random polygons we
generate are following their theoretical distributions, and that the approximating pdf
function g′(r) is quite accurate. It is worthwhile for us to point out that numerical
studies on the approximating pdf g′(r) have not been carried out before.

Figure 8. Kernel estimations of the pdf for the middle point distance for n = 200,
400, 1000 and 2000. The Gaussian kernel is used for the plots. The bandwidth
for n = 200 is 0.5, for n = 400 and 1000 is 1 and for n = 2000 is 2.

• Radius of gyration

Next we studied the mean radius of gyration. The radius of gyration estimates
the size of a molecule and can be experimentally measured by standard sedimentation
assays. In [18] it was found that the squared radius of gyration of a polygonal molecule
increases as 1

12n2ν with ν = 0.5. Our result is in excellent agreement with that
presented in [18] as shown in Figure 9. For comparison purposes we also included
results obtained through our own implementation of the crankshaft algorithm.

• Knotting probability

Next we asked what is the probability that a given polygon is knotted. As stated
in Theorem 3, P (knotted) ≥ 1 − exp(−nε) for some positive constant ε [13]. In fact,
as shown in many numerical studies long EPs tend to be knotted with a knotting
probability of the form 1− exp(−αn) with α ≈ 1

244 [11, 37]. We compared our results
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Figure 9. Mean squared radius of gyration of polygons generated using the
generalized Hedgehog method with one standard deviation. The x-axis represents
the number of segments within the polygon generated and the y-axis represents
the mean squared radius of gyration calculated. The results by the crankshaft
method and by Dobay et al. [18] are provided for comparison. The standard
deviations are less than or about the size of the dots.

to those presented in Micheletti et al. [34] (where the crankshaft algorithm was used)
and those calculated using our own crankshaft algorithm implementation. Figure 10
below illustrates the comparison of our experiments and shows an excellent agreement
of the three methods.

Figure 10. Knotting probability comparison. The x-axis represents the number
of segments of the polygon generated and the y-axis represents the average
knotting probability.

• Average crossing number
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The average crossing number (ACN) is a geometrical measure of the entanglement
complexity of the polygon and it has been proposed that knotted DNA molecules
migrate in gel electrophoresis proportionally to the average crossing number of their
ideal configuration [53]. The ACN is known to grow as 3

16nln(n) + O(n) as we
mentioned earlier in Theorem 2 [14]. We compared our mean ACN values with the
values obtained using our own implementation of the crankshaft method and the
theoretical expected results derived from Diao et al. [14]. The results are illustrated
in Figure 11.

Figure 11. Mean average crossing number comparison. x-axis represents the
number of segments within the polygons generated and y-axis represents the mean
average crossing number calculated. The standard deviations are less than or
about the size of the dots.

6. Conclusions and ending remarks

Knots and links are commonly found in nucleic acids and proteins. DNA knots and
links have been used for many years in experimental laboratories and have been key to
unveil the action of some DNA binding proteins (e.g. [6, 7, 25]) and the chromosome
organization in certain viruses [3]. Protein knots on the other hand are novel structures
[50] and hold a great promise for better understanding the problem of protein folding
[30]. Importantly their true functional and evolutionary significance remains to be
determined [29, 52]. In many of these structural studies it is often necessary to
generate large samples of non-correlated polygonal curves. However this task has been
hindered by the lack of efficient and ergodic algorithms that generate such samples.
Here we have presented a new algorithm to generate large samples of independent
knotted equilateral polygons. We have rigorously shown that this algorithm is ergodic
and also that it can reproduce current known numerical results for the mean square
radius of gyration, the knotting probability, and the mean average crossing number.
Furthermore the algorithm seems to generate random equilateral random polygons
according to its theoretical distribution as indicated by the tests we carried out in our
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numerical study. However it remains a challenging problem to prove or disprove this
theoretically.

This algorithm can be used to study knotting and linking of DNA molecules in
free solution. However more accurate representation of the DNA chain and proteins is
needed. In future studies we will address this problems and also extend the algorithm
to study problems of DNA knotting and linking in confinement.
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