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Abstract. An s-elementary normalized tight frame wavelet (associated with
an expansive matrix A as its dilation matrix) is a normalized tight frame

wavelet whose Fourier transform is of the form 1√
2π

χE for some measurable

set E ⊂ Rd. It is known that the set of all such functions is path-connected.
In this paper, we show that for any given d × d expansive matrix A, the set
of all (A-dilation) s-elementary normalized tight frame wavelets with a frame
MRA structure is also path-connected.

1. Introduction

A sequence {xn} in a Hilbert space H is called a frame for H if there exist
constants C1, C2 > 0 such that

C1‖x‖2 ≤
∑

n∈N
|〈x, xn〉|2 ≤ C2‖x‖2, ∀x ∈ H.

If C1 = C2 = C, {xn} is called a tight frame and the constant C is called
the frame bound for {xn}. In particular, if C1 = C2 = 1, then {xn} is called a
normalized tight frame. It is known ([9]) that xn is a normalized tight frame for
H if and only if x =

∑
n∈N〈x, xn〉xn for all x ∈ H. In this paper, we will use

L2(Rd)(= L2(Rd, µ)) as H, where d ≥ 1 and µ is the Lebesgue measure. The set
of all bounded linear operator acting on H is B(H). A d× d matrix A is called an
expansive matrix if all eigenvalues of A have modulus greater than one. Throughout
this paper, A is understood to be an expansive matrix with integer entries (so that
AZd ⊂ Zd).

Let T , D be the translation and dilation unitary operators acting on H defined
by (T `f)(t) = f(t − `), (DAf)(t) = |det A| 12 f(At), ∀f ∈ L2(Rd), t ∈ Rd. A
function ψ ∈ L2(Rd) is called a frame wavelet (tight frame wavelet, normalized tight
frame wavelet, orthonormal wavelet) if {Dn

AT `ψ : n ∈ Z, ` ∈ Zd} is a frame (tight
frame, normalized tight frame, orthonormal basis) for L2(Rd).
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The topological property of various families of wavelets is an interesting topic
in the study of wavelet theory. The question concerning the path-connectedness of
the set of all orthonormal wavelets was first raised in [6]. Similar questions were
raised and studied in [2, 5, 10, 11, 12, 13] concerning the sets of all MRA-wavelets,
tight frame wavelets, MRA tight frame wavelets and a special class of frame wavelets
called s-elementary frame wavelets (to be defined in the next section). In [10, 13],
it is shown that the set of all MRA-wavelets is path-connected. In [12], it is
shown that the set of all s-elementary orthonormal wavelets is path-connected.
This result is extended to the set all s-elementary tight frame wavelets (with any
given frame bound) in [2]. The proofs of these theorems were based on the complete
characterizations of the corresponding wavelets. Interestingly, while the complete
characterization of the s-elementary frame wavelets is still an open question, it has
been shown that the set of s-elementary frame wavelets is path-connected as well [5].
In this paper, we will prove the path-connectedness of the s-elementary normalized
tight frame wavelets with an additional structure called the frame multiresolution
analysis (FMRA for short).

The basic definitions and preliminary results are given in the next section and
the main theorem is stated and proved in Section 3.

2. s-elementary normalized tight frame wavelets with FMRA

The following definition is a natural generalization of standard multiresolution
analysis (MRA) and is called the frame multiresolution analysis (FMRA). This was
first introduced by Benedetto and Li [1].

Definition 2.1. A frame multiresolution analysis associated with a dilation
matrix A (A-dilation FMRA for short) is a sequence {Vj : j ∈ Z} of closed subspaces
of H satisfying following conditions:

(1) Vj ⊂ Vj+1, ∀j ∈ Z;

(2)
⋂

j∈Z Vj = {0}, ⋃j∈Z Vj = L2(Rd);

(3) DjV0 = Vj , DVj = Vj+1, j ∈ Z;

(4) W0 = V1 ª V0,Wn = Vn+1 ª Vn, DWn = Wn+1;

(5) There exists a function ϕ ∈ V0 such that {T`ϕ = ϕ(x− `), ` ∈ Zd, x ∈ Rd} is a
normalized tight frame for V0.

The function ϕ in (5) above is called a frame scaling function for the A-dilation
FMRA. A function ψ ∈ W0 = V1 ª V0 is called an A-dilation normalized tight
frame wavelet with FMRA if {T`ψ(x) = ψ(x − `), ` ∈ Zd,x ∈ Rd} is a normalized
tight frame for W0. For the sake of simplicity, in the rest of this paper, such a
function will be called an FMRA frame wavelet. Even though we do not mention
the matrix A in this way, it is understood that all the FMRA frame wavelets are
normalized tight frame wavelets with the same dilation matrix A. Furthermore, let
us remind our reader that A has integer entries so we must have |det A| ≥ 2 since
A is also expansive. In the above definition, if we replace “normalized tight frame”
by “orthonormal basis ” in (5), then we obtained the standard definition for MRA.
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Let f ∈ L2(R)d ∪ L1(Rd), its Fourier-Plancherel transform is defined by

f̂(s) = (Ff)(s) =
1

(2π)d/2

∫

Rd

e−i(s◦t)f(t)dt,

where s ◦ t denotes the real inner product. For a bounded linear operator S on
L2(R)d, we will denote FSF−1 by Ŝ. It is easy to verify that D̂A = D(Aτ )−1 =
D−1

Aτ = D∗
Aτ (Aτ is the transpose of A), and T̂λf = e−i(λ◦s) · f for any λ ∈ Rd.

Definition 2.2. Let E be a measurable set in Rd. If F−1( 1√
µ(E)

χE) = ψE is

an FMRA frame wavelet, then ψE is called an s-elementary FMRA frame wavelet,
and E is called an FMRA frame wavelet set.

In the case that E is an FMRA frame wavelet set, the function ϕ defined by ϕ̂ =
1√

µ(K)
χK , where K =

⋃∞
m=1(A

τ )−mE is a scaling function for the corresponding

FMRA. It is easy to see that K ⊂ AτK and E = AτK\K. Let us call K the scaling
set for E.

Two measurable sets E and F of Rd are 2π-translation congruent if there
exists a measurable bijection θ : E → F such that θ(t)− t ∈ 2πZd for each t ∈ E.
Analogously, two measurable sets G and H are A-dilation congruent if there exists
a measurable bijection ξ : G → H such that for any t ∈ G, there exists m ∈ Z
such that ξ(t) = Amt. A measurable set E is a 2π-translation generator of Rd if
{E + 2`π : ` ∈ Zd} forms a partition of Rd. Analogously, a measurable set E is an
A-dilation generator of Rd \ {0} if {AmE : m ∈ Z} forms a partition of Rd \ {0}.

Let us now list a few known results that we will need later in our proofs. The
following lemma can be obtained using the same approach used in [9] for the one
dimensional case.

Lemma 2.3. The following two statements hold:
(1) A measurable subset E of Rd is a normalized tight frame wavelet set if and

only if E is both an Aτ -dilation generator of Rd and translation congruent to a
subset of [−π, π)d.

(2) Let K be a measurable set in Rd and ϕ(t) = 1√
µ(F )

χK(t), then {ei(`◦t)ϕ(t), ` ∈
Zd} is a normalized tight frame for L2(K) if and only if and K is translation con-
gruent to a subset of [−π, π)d.

Lemma 2.4. A measurable set E in Rd is an A-dilation FMRA frame wavelet
set if and only if (1) E is an Aτ -dilation generator of Rd and is translation congruent
to a subset of [−π, π)d and (2) E = AτK\K for some K with the property that
K ⊂ AτK, and K is translation congruent to a subset of [−π, π)d.

Proof. =⇒: By Lemma 2.3, (1) holds trivially. Let ψ̂ = ψ̂E = 1√
µ(E)

χE , and

K =
⋃∞

m=1(A
τ )−mE, ϕ̂ = 1√

µ(K)
χK . By the assumption, T̂ `ϕ̂ = {ei`◦xϕ̂(x), ` ∈

Zd} is a normalized tight frame for L2(K). By Lemma 2.3, K is translation con-
gruent to a subset of [−π, π)d, and AτK = E ∪K.

⇐=: By (1), E is a frame wavelet set. We will prove that ψ = F−1( 1√
µ(E)

χE) is

an A-dilation frame wavelet with FMRA. Let Wj = span{DjT `ψ(x), ` ∈ Zd}, j ∈
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Z, and Vj =
⊕j−1

i=−∞Wi. Then F(Wj) = L2((Aτ )jE), j ∈ Z. Hence F(V0) =
L2(

⋃∞
j=1(A

τ )−jE). We have K =
⋃∞

j=1(A
τ )−jE by K ⊂ AτK and E = AτK \K.

Since K is translation congruent to a subset of [−π, π)d, it follows that T̂ ` 1√
µ(K)

χK

is a normalized tight frame for L2(K). Thus F−1( 1√
µ(K)

χK) is a scaling function

in V0. So F−1( 1√
µ(E)

χE) is an A-dilation frame wavelet set with FMRA. ¤

Lemma 2.5. [8] For any real d × d expansive matrix A, there exists an open
and bounded neighborhood F of the origin such that F ⊆ AτF .

Lemma 2.6. [3] Let A be a real expansive matrix. Then limk→∞‖A−k‖ = 0
and limk→∞‖Ak‖ = ∞.

Theorem 2.7. For every expansive matrix A, there exists an A-dilation FMRA
frame wavelet set.

Proof. By Lemma 2.5, there exists an open and bounded neighborhood F of
zero such that F ⊆ AτF . Since F is bounded and limk→∞‖(Aτ )−k‖ = 0 by Lemma
2.6, there is an integer k0 such that (Aτ )k0F ⊂ B(1), where B(1) is the unit ball
with its center at the origin. Since F ⊂ AτF, (Aτ )k0−1F ⊂ (Aτ )(Aτ )k0−1F. Let
K = (Aτ )k0−1F , then K ⊂ AτK ⊂ B(1) ⊂ [−π, π)d. Let E = AτK \ K. By
the definition, AτK \K and K are both translation congruent to some subsets of
[−π, π)d. Since K contains the origin as an interior point and A is expansive, we
have that

⋃
n∈Z(A

τ )n(AτK\K) = Rd\{0}. Furthermore, {(Aτ )n(AτK \K) : n ∈
Z} are disjoint sets, hence AτK \K is an Aτ -dilation generator of Rd. The result
now follows from Lemma 2.4. ¤

3. Path-connectivity of s-elementary FMRA frame wavelets

A set S ⊂ L2(Rd) is said to be path-connected under norm topology of L2(Rd)
if for any two members f , g ∈ S, there exists a mapping γ : [0, 1] → S such that
the function γ(t) is continuous in the norm of L2(Rd) and γ(0) = f , γ(1) = g.
However, in the case of wavelets or frame wavelets with either an MRA or FMRA
structure, we would like the connecting path to preserve the corresponding scaling
functions. In this paper, we consider the special case when S is the set of all s-
elementary FMRA frame wavelets. The path that connects two such wavelets will
need to satisfy one additional condition: the corresponding scaling functions of
the points on the path (which are s-elementary FMRA frame wavelets) must form
a continuous path connecting the scaling functions of two starting s-elementary
FMRA frame wavelets. Let us call such a path a scaling function preserving path,
or just an SP-path for short. Let E and F be two FMRA frame wavelet sets in
Rd with K and N being their corresponding scaling sets. We will also say {Et}
is a scaling preserving path (SP-path for short) connecting E and F if χEt is a
continuous (in the L2(Rd) norm) path connecting χE and χF such that Et is an
FMRA frame wavelet set for each t and the corresponding scaling set Kt is also
a continuous path connecting K and N . The following lemma is direct from this
definition.
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Lemma 3.1. Let ψE and ψF be two s-elementary FMRA frame wavelets with
ϕK and ϕN being their corresponding scaling function, E and F being their corre-
sponding FMRA frame wavelet sets and K, N being the corresponding scaling sets
of E, F . Then the following two statements are equivalent:

(1) ψE and ψF are connected by an SP-path.
(2) For each t ∈ [0, 1], there exist measurable sets Et and Kt such that (a)

{Et} is a normalized tight frame wavelet set with Kt being its scaling function set
for each t ∈ [0, 1]; (b) E0 = E and E1 = F , K0 = K and K1 = N ; (c) Et and
Kt are continuous in t. That is, for any t0 ∈ [0, 1] ∩ (t0 − ε1, t0 + ε1), we have
µ(Et\Et0) + µ(Et0\Et) < ε and µ(Kt\Kt0) + µ(Kt0\Kt) < ε.

Theorem 3.2. For any given d × d real expansive matrix A, the set of all A-
dilation s-elementary FMRA frame wavelets is path-connected in the scaling func-
tion preserving sense.

Proof. Let ψE and ψF be two s-elementary FMRA frame wavelets with ϕK

and ϕN being their corresponding scaling function, E and F being their corre-
sponding FMRA frame wavelet sets and K, N being the corresponding scaling sets
of E, F . The main idea of the proof is that we will find two special FMRA frame
wavelet sets D and G and show that ψE and ψD are SP-path connected, ψF and
ψG are SP-path connected, and ψD, ψG are also SP-path connected.

For the sake of convenience, let us introduce an operation notation: For any
set P ⊂ Rd, define ∆(P ) = ∪j∈Z(Aτ )jP and ∆−(P ) = ∪j≥1(Aτ )−jP . By this
definition, the scaling set of an FMRA frame wavelet set P is simply ∆−(P ).

By Theorem 2.7 (and the lemmas preceding it), there exists an FMRA frame
wavelet set Q such that Q and ∆−(Q) are both subsets of [−π, π)d, and ∆−(Q)
is an open set that contains the origin. We have K = ∆−(E). Consider the set
∆−(Q) ∩∆−(E).

Claim 3.3. We claim that D = Aτ (∆−(Q)∩∆−(E))\ (∆−(Q)∩∆−(E)) is an
FMRA frame wavelet set with ∆−(D) = ∆−(Q) ∩ ∆−(E) being its corresponding
scaling set.

Proof. By Lemma 2.4, to prove this claim, we need to establish the following:
(1) ∆−(D) ⊆ Aτ∆−(D); (2) D = Aτ∆−(D) \ ∆−(D) and ∆−(D) are both 2π-
translation congruent to subsets of [−π, π)d; (3) D is an A-dilation generator of
Rd \ {0}.

First, we have ∆−(D) = ∆−(Q)∩∆−(E) ⊂ Aτ∆−(Q)∩Aτ∆−(E) = Aτ (∆−(Q)∩
∆−(E)), since ∆−(Q) ⊂ Aτ∆−(Q) and ∆−(E) ⊂ Aτ∆−(E). This proves (1). Sec-
ondly, since ∆−(D) = ∆−(Q)∩∆−(E) ⊆ ∆−(Q) and ∆−(Q) is a subset of [−π, π)d,
so is ∆−(D). Furthermore, D = Aτ∆−(D) \ ∆−(D) ⊆ Aτ∆−(Q) = Q ∪ ∆−(Q).
Since Q∪∆−(Q) is a disjoint union and is a subset of [−π, π)d, D and ∆−(D) are
disjoint subsets of [−π, π)d. This proves (2). Thirdly, for any given x ∈ Rd \ {0},
{(Aτ )jx : j ∈ Z} is a sequence of points that converges to the origin as j → −∞
by Lemma 2.6. Since E is an A-dilation generator, there exists j0 ∈ Z such that
(Aτ )jx ∈ ∆−(E) for any j ≤ j0. This implies that {(Aτ )jx : j ∈ Z} ∩∆−(D) 6= ∅
since ∆−(Q) is an open set containing O. On the other hand, since Aτx approaches
infinity as j →∞ (again by Lemma 2.6), (Aτ )jx 6∈ ∆−(D) when j is large enough.
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Thus, there exists j1 ∈ Z such that (Aτ )j1x ∈ ∆−(D) but (Aτ )j1+1x 6∈ ∆−(D).
This means y = (Aτ )j1+1x is an element of D = Aτ∆−(D) \ ∆−(D). So x is A-
dilation equivalent to a point in D. Since x is arbitrary, this proves (3) and hence
the claim.

Having established that the set D so defined above is an FMRA frame wavelet
set with ∆−(D) = ∆−(Q) ∩ ∆−(E) being its corresponding scaling set, we are
now in position to construct an SP-path connecting D and E. The approach used
here is similar to the one used in [2] but we will provide the details here for the
convenience of our reader.

Note 3.4. In fact, the set D can be chosen to be very close to the origin such
that for any point x ∈ D, Aτx ∈ [−π, π)d. We will now assume that D is so chosen.

Claim 3.5. For any subset I of D, define J = E ∩∆(I). We claim that

(i) the set EI = (E \ J) ∪ I is an A-dilation generator Rd \ {0};
(ii) EI and ∆−(EI) are disjoint and

(iii) ∆−(EI) is congruent to a subset of [−π, π)d.

Proof. (i) is straight forward and is left to our reader to verify. (iii) holds since
∆−(I) is actually a subset of ∆−(E): ∆−(EI) = ∆−(E \ J) ∪ ∆−(I) ⊆ ∆−(E)
and ∆−(E) is known to be congruent to a subset of [−π, π)d. For (ii), again use
∆−(EI) = ∆−(E \ J) ∪ ∆−(I). ∆−(I) is disjoint from I since I ⊂ D and D
is disjoint from ∆−(D). ∆−(I) is also disjoint from E \ J since it is actually
contained in ∆−(E). It is obvious that ∆−(E \ J) is disjoint from E \ J . Finally,
∆(I) = ∆(J) by the definition of J . It follows that I is disjoint from ∆(E \J), but
∆−(E \ J) ⊂ ∆(E \ J). This concludes (ii).

For each t ∈ [0, 1], define I1
t = [−πt, πt)d ∩ D, J1

t = E ∩ ∆(I1
t ) and E1

t =
(E \ J1

t ) ∪ I1
t . E1

t is so defined as we wish to replace a part of E (namely J1
t ) by

a part of D (namely I1
t ) that are A-dilation congruent (in a continuous manner)

so that the resulting set E1
t = (E \ J1

t ) ∪ It is still an FMRA frame wavelet set.
By Claim 3.5, E1

t = (E \ J1
t ) ∪ I1

t is almost an FMRA frame wavelet set. The
only extra condition that it needs to satisfy is that it must also be congruent to
a subset of [−π, π)d. The construction of E1

t apparently does not guarantee this.
The following steps reflect our effort to modify E1

t so that this extra condition will
hold at the end.

For any measurable set P , define T (P ) = ∪06=`∈Zd(P + 2π`). Define H1
t =

(E \J1
t )∩T (I1

t ). In other word, H1
t is the part of (E \J1

t ) that would overlap with
I1
t under non-trivial 2π-translations. We wish to get rid of it since our resulting set

must be congruent to a subset of [−π, π)d. Deleting H1
t , of course, will then result

in a deficiency in the set as an A-dilation generator of Rd \ {0}. So we will need
to find a subset of D which will make up this deficiency. This sets up the following
recursively defined sets.
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I2
t = (D ∩∆(H1

t )) ∪ I1
t ,

J2
t = H1

t ∪ J1
t ,

E2
t = (E \ J2

t ) ∪ I2
t ,

H2
t = (E \ J2

t ) ∩ T (I2
t ),

I3
t = (D ∩∆(H2

t )) ∪ I2
t ,

J3
t = H2

t ∪ J2
t ,

E3
t = (E \ J3

t ) ∪ I3
t ,

H3
t = (E \ J3

t ) ∩ T (I3
t ),

... ...

By the above definition, {Ij
t : j ≥ 1} and {Jj

t : j ≥ 1} are ascending sequences.
Now define It = ∪j≥1I

j
t , Jt = ∪j≥1J

j
t and let Et = (E \ Jt) ∪ It. It is clear from

the definition that E0 = E and E1 = D. It is easy to see that ∆(It) = ∆(Jt) hence
Et satisfies the conditions listed in Claim 3.5. If we can prove that Et is congruent
to a subset of [−π, π)d, then Et is an FMRA frame wavelet set for each t. Suppose
this is not true. Then there exists x ∈ E \ Jt and a nontrivial ` ∈ Zd such that
x + 2π` = s ∈ It. It follows that there exists j0 ∈ Z such that s ∈ Ij0

t . Since
x ∈ E \Jt ⊆ E \Jj0

t , we have x = s−2π` ∈ (E \Jj0
t )∩T (Ij0

t ) = Hj0
t ⊆ Jj0+1

t ⊆ Jt,
a contradiction.

What remains to be shown is that Et is continuous in t.

For any t2 > t1, it is clear that It1 ⊆ It2 and Jt1 ⊆ Jt2 so It1 \ It2 = ∅
and Jt1 \ Jt2 = ∅. On the other hand, we have It2 \ It1 = I ′t1,t2 , Jt2 \ Jt1 =
J ′t1,t2 where I ′t1,t2 and J ′t1,t2 are defined the same way as It and Jt by replacing
I1
t with I1

t1,t2 = ([−t2π, t2π)d \ [−t1π, t1π)d) ∩D, whose measure is bounded above
by (2πt2)d − (2πt1)d. First let us consider I ′t1,t2 = ∪j≥1I

j
t1,t2 . We have I2

t1,t2 =
(D∩∆(H1

t1,t2))∪I1
t1,t2 . Since H1

t1,t2 is 2π-translation congruent to a subset of I1
t1,t2 ,

its measure is at most the measure of I1
t1,t2 (which is at most (2πt2)d − (2πt1)d).

D ∩ ∆(H1
t1,t2) is the A-dilation equivalence of H1

t1,t2 in D. By the definition of
H1

t1,t2 , we have H1
t1,t2 ∩ [−π, π)d = ∅. Thus by Note 3.4, each point of H1

t1,t2 must
be multiplied by a negative power of Aτ in order for the result to be in D. It follows
that the measure of D∩∆(H1

t1,t2) is at most ((2πt2)d− (2πt1)d)/| detA|. Following
the same argument, we can show that µ(Ij+1

t1,t2 \Ij
t1,t2) ≤ ((2πt2)d−(2πt1)d)/| detA|j

in general. Since A is expansive, |det A| > 1 hence the series
∑

j≥0
1

| det A|j converges
to some constant b. It follows that

µ(I ′t1,t2) ≤ ((2πt2)d − (2πt1)d)
∑

j≥0

1
| detA|j = b((2πt2)d − (2πt1)d).

This inequality then guarantees the continuity of It. The continuity of Jt can be
similarly proved. Thus Et is continuous (and so is ψEt).

The SP-path between F and G (which is defined the same way as D with E
replaced by F ) can be similarly constructed.

Finally, we will construct the SP-path connecting D and G. Since D and G are
both subsets of [−π, π)d, this is much easier since there is no need to worry about
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the 2π-translation redundance so the path involves with only the first step as in
the definition of Et. ¤
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