The Linearity of the Ropelengths of Conway Algebraic Knots in Terms of Their Crossing Numbers

Y. Diao, C. Ernst and U. Ziegler

Abstract

For a knot or link K, let $L(K)$ denote the ropelength of K and let $Cr(K)$ denote the crossing number of K. An important problem in geometric knot theory concerns the relationship between $L(K)$ and $Cr(K)$ (or intuitively, the relationship between the length of a rope needed to tie a particular knot and the complexity of the knot). We show that there exists a constant $a > 0$ such that if a knot K allows a special knot diagram D (called Conway algebraic knot diagram) with n crossings, then $L(K) \leq a \cdot n$. Furthermore, if D is alternating (but not necessarily reduced and in fact K may not have a minimal alternating diagram that is algebraic), then $L(K) \leq a \cdot Cr(K)$. The approach used here can be applied to a larger class of knots, namely those formed by replacing single crossings in a Conway algebraic knot diagram by tangles whose crossing number is bounded by a constant. Interestingly, it has been shown by the same authors that the Jones polynomials of these knots can be computed in polynomial time.

2000 AMS Subject Classification: Primary 57M25

Key words and phrases: Knots, links, crossing number, thickness of knots, ropelength of knots, Conway algebraic knots, arborescent knots.

Department of Mathematics and Statistics, UNC-Charlotte, Charlotte, NC 28223-0001