Abstract

Let A be any 2×2 real expansive matrix. For any A-dilation wavelet ψ, let $\hat{\psi}$ be its Fourier transform. A measurable function f is called an A-dilation wavelet multiplier if the inverse Fourier transform of $(f \hat{\psi})$ is an A-dilation wavelet for any A-dilation wavelet ψ. In this paper, we give a complete characterization of all A-dilation wavelet multipliers under the condition that A is a 2×2 matrix with integer entries and $|\det(A)| = 2$. Using this result, we are able to characterize the phases of A-dilation wavelets and prove that the set of all A-dilation MRA wavelets is path-connected under the $L^2(\mathbb{R}^2)$ norm topology for any such matrix A.

Department of Mathematics and Statistics, UNC-Charlotte, Charlotte, NC 28223-0001