GENERATING 4-REGULAR HAMILTONIAN PLANE GRAPHS

O. Ascigil, Y. Diao, C. Ernst, D. High and U. Ziegler

Preprint no. 2007-02
February 5, 2007

Abstract

This paper describes the study of a special class of 4-regular plane graphs which are Hamiltonian. These graphs are of special interest in knot theory. An algorithm is presented that randomly generates such graphs with \(n \) vertices with a fixed (and oriented) Hamiltonian cycle in \(O(n) \) time. An exact count of the number of such graphs with \(n \) vertices is obtained and the asymptotic growth rate of this number is determined. Numerical evidence is presented to show that the algorithm can be modified to generate these graphs with a near uniform probability. This can be considered as a first step in generating large random knots without bias.

2000 AMS Subject Classification: Primary 05A16, 05C85, Secondary 68R10, 05C10, 57M25.

Key words and phrases: plane graphs, 4-regular graphs, Hamiltonian cycles, knot diagrams.