Realizable Powers of Ropelengths by Nontrivial Knot Families

Yuanan Diao and Claus Ernst

Preprint no. 2003-04

Abstract

For any given knot K, a thick realization K_0 of a knot type K is a knot of unit thickness which is of the knot type K. The ropelength of K is defined as the arc length of the shortest thick realization of K. A recent result shows that there exists a constant $b > 0$ such that for any knot type K, its ropelength $L(K)$ is bounded above by $b \cdot (Cr(K))^{3/2}$, where $Cr(K)$ is the crossing number of K. It is also known that there exists a family of infinitely many knot types $\{K_n\}$ such that $n = Cr(K_n) \to \infty$ as $n \to \infty$ and $L(K_n) = O(n)$. In this paper, we show that for each p with $3/4 \leq p \leq 1$, there exists a family of infinitely many knot types $\{K_n\}$ with the property that $Cr(K_n) \to \infty$ (as $n \to \infty$) such that $a_0 \cdot (Cr(K_n))^p \leq L(K_n) \leq b_0 \cdot (Cr(K_n))^p$, where a_0 and b_0 are some positive constants. In other word, any power between $3/4$ and 1 is realizable by some knot family.

1991 AMS Subject Classification: Primary: 57M25

Key words and phrases: Knots, links, crossing number, thickness of knots, rope length of knots.