The Existence of Subspace Wavelet Sets

X. Dai, Y. Diao, Q. Gu, and D. Han

Abstract

Let \mathcal{H} be a reducing subspace of $L^2(\mathbb{R}^d)$, that is, a closed subspace of $L^2(\mathbb{R}^d)$ with the property that $f(A^m t - \ell) \in \mathcal{H}$ for any $f \in \mathcal{H}$, $m \in \mathbb{Z}$ and $\ell \in \mathbb{Z}^d$, where A is a $d \times d$ expansive matrix. It is known that \mathcal{H} is a reducing subspace if and only if there exists a measurable subset M of \mathbb{R}^d such that $A^t M = M$ and $\mathcal{F}(\mathcal{H}) = L^2(\mathbb{R}^d) \cdot \chi_M$. Under some given conditions of M, it is known that there exist A-dilation subspace wavelet sets with respect to \mathcal{H}. In this paper, we prove that this holds in general.

Key words and phrases: Frame, Wavelet, Frame Wavelet, Frame Wavelet Set, Fourier Transform.