1. Evaluate the limit: \(\lim_{{x \to 2}} \frac{x^2 - 4}{x^2 + 4x - 12} \).

(a) 0
(b) 0.25
(c) 0.5
(d) 1
(e) Does not exist

2. Which of the following is the derivative of \(g(x) = x^2 \cos(3x + 1) \)?

(a) \(2x \sin(3x + 1) \)
(b) \(-6x \sin(3x + 1) \)
(c) \(2x \cos(3x + 1) - x^2 \sin(3x + 1) \)
(d) \(2x \cos(3x + 1) + 3x^2 \sin(3x + 1) \)
(e) \(2x \cos(3x + 1) - 3x^2 \sin(3x + 1) \)

3. Find an equation for the line that is tangent to the graph of \(f(x) = x^3 - 7x + 4 \) at \(x = 2 \).

(a) \(y = -7x + 4 \)
(b) \(y = -7x + 12 \)
(c) \(y = -3x + 4 \)
(d) \(y = 5x - 12 \)
(e) \(y = 5x + 4 \)

4. For what values of \(x \), if any, does the function \(f(x) = 3x^4 - 32x^3 + 72x^2 + 10 \) have a local minimum?

(a) There is no local minimum
(b) Only at \(x = 0 \)
(c) Only at \(x = 2 \)
(d) Only at \(x = 6 \)
(e) At \(x = 0 \) and at \(x = 6 \)
5. Which of the following is the derivative of \(f(x) = e^{3x^2 + 1} \) ?

(a) \(6x e^{3x^2 + 1} \)
(b) \(e^{3x^2 + 1} \)
(c) \(6 e^{3x^2} \)
(d) \(e^{6x} \)
(e) \((3x^2 + 1)e^{3x^2} \)

6. Which of the following is the derivative of \(f(x) = \frac{x^3}{\sin(5x)} \) ?

(a) \(\frac{3x^2}{\cos(5x)} \)
(b) \(\frac{3x^2}{5 \cos(5x)} \)
(c) \(\frac{3x^2 \sin(5x) - 5x^3 \cos(5x)}{\sin^2(5x)} \)
(d) \(\frac{3x^2 \sin(5x) + 5x^3 \cos(x)}{\sin^2(5x)} \)
(e) \(\frac{5x^3 \cos(5x) - 3x^2 \sin(5x)}{\sin^2(5x)} \)

7. A particle is traveling around the circle \(x^2 + y^2 = 25 \) where \(x \) and \(y \) are measured in inches. At the instant the particle is at the point \((3, 4) \), \(\frac{dy}{dt} = 15 \text{ in/sec} \). Find \(\frac{dx}{dt} \) at this time.

(a) \(-20 \text{ in/sec} \)
(b) \(-15 \text{ in/sec} \)
(c) \(-2.5 \text{ in/sec} \)
(d) \(15 \text{ in/sec} \)
(e) \(20 \text{ in/sec} \)

8. Which of the following is the derivative of \(f(x) = \tan(x) \) ?

(a) \(-\cot(x) \)
(b) \(\cot(x) \)
(c) \(\sec(x) \)
(d) \(\sec^2(x) \)
(e) \(\sec(x) \tan(x) \)

9. Which of the following is the slope of the line tangent to the curve \(y^2 + 3x^2 + xy = 36 \) at \((2, 4) \)?

(a) \(-4 \)
(b) \(-2 \)
(c) \(-1.6 \)
(d) \(-4/3 \)
(e) \(8/3 \)
10. The derivative of the function \(f(x) \) is given by \(f'(x) = 20x + 6x^{3/2} \). Find a formula for the function \(f(x) \) given that \(f(1) = 25 \).

(a) \(f(x) = 10x^2 + 4x^{3/2} + 11 \)
(b) \(f(x) = 20x^2 + 6x^{3/2} - 1 \)
(c) \(f(x) = 40x^2 + 6x^{3/2} - 21 \)
(d) \(f(x) = 40x^2 + 9x^{3/2} - 24 \)
(e) \(f(x) = 3x^{-1/2} + 22 \)

11. Evaluate the limit: \(\lim_{x \to 2} \frac{21x + 2}{7x - 4} \).

(a) 0
(b) 3
(c) 4.4
(d) 8
(e) Does not exist

12. Which of the following is the derivative of \(f(x) = \ln(8x + 3) \)?

(a) \(\frac{1}{8x + 3} \)
(b) \(\frac{8}{8x + 3} \)
(c) \(\frac{-64}{(8x + 3)^2} \)
(d) \(\frac{-8}{(8x + 3)^2} \)
(e) \(\frac{-1}{(8x + 3)^2} \)

13. Evaluate the limit: \(\lim_{x \to +\infty} \frac{9x + 3e^{-x}}{2x - 5e^{-x}} \).

(a) \(-4\)
(b) 0
(c) 6/7
(d) 4.5
(e) Does not exist
1. Determine the values of A and B (if they exist) using the graph of $f(x)$.

\[
\lim_{x \to -3} f(x) = A \quad \lim_{x \to 2} f(x) = B
\]

(a) A does not exist, $B = -2$
(b) $A = -1$, $B = -2$
(c) $A = -1$, $B = 3$
(d) $A = 2$, $B = -2$
(e) $A = 2$, $B = 3$

2. A cube is measured to have edges of length 20 cm with a possible error no worse than ±0.03 cm. Use differentials to estimate the maximum error in calculating the volume.

(a) ±60.0 cm3
(b) ±36.0 cm3
(c) ±24.0 cm3
(d) ±1.8 cm3
(e) ±0.6 cm3

3. The function $f(x)$ has a derivative for each value of x and $g(x) = \sqrt{f(x)}$. Find $g'(2)$ given that $f(2) = 25$ and $f'(2) = 16$.

(a) $g'(2) = 3.2$
(b) $g'(2) = 1.6$
(c) $g'(2) = 0.2$
(d) $g'(2) = 0.1$
(e) $g'(2)$ does not exist

4. Use Newton’s method to approximate where $f(x) = x^3 + x^2 + 2x + 3$ has a zero. Start with $x_1 = 1$ as the first approximation and calculate x_2 and x_3.

(a) $x_2 = 0$ and $x_3 = -1.5$
(b) $x_2 = 0$ and $x_3 = -2/3$
(c) $x_2 = 0$ and $x_3 = 1.5$
(d) $x_2 = 2$ and $x_3 = 55/18$
(e) $x_2 = 2$ and $x_3 = 56/19$
5. The graph at right is the graph of the derivative of the function $f(x)$ [so the graph of $y = f'(x)$]. Which of the following statements is true about the function $f(x)$.

(a) $f(x)$ is increasing when $A < x < C$ and $F < x < +\infty$ and concave up when $-\infty < x < B$ and $E < x < +\infty$

(b) $f(x)$ is increasing when $A < x < C$ and $F < x < +\infty$ and concave up when $D < x < +\infty$

(c) $f(x)$ is increasing when $-\infty < x < B$ and $E < x < +\infty$ and concave up when $D < x < +\infty$

(d) $f(x)$ is increasing when $-\infty < x < B$ and $E < x < +\infty$ and concave up when $A < x < B$ and $F < x < +\infty$

(e) $f(x)$ is increasing when $-\infty < x < B$ and $E < x < +\infty$ and concave up when $-\infty < x < D$

6. Which of the following limits represents the derivative of $f(x) = \cos(3x + 1)$?

(a) $\lim_{h \to 0} \frac{\cos(3x + h + 1) - \cos(3x + 1)}{h}$

(b) $\lim_{h \to 0} \frac{\cos(3x + 3h + 3) - \cos(3x + 1)}{h}$

(c) $\lim_{h \to 0} \frac{\cos(3x + 3h + 1) - \cos(3x + 1)}{h}$

(d) $\lim_{h \to 0} \frac{3\cos(x + h + 1/3) - 3\cos(x + 1/3)}{h}$

(e) $\lim_{h \to 0} \frac{\cos(3x + h + 1)}{h}$

7. The derivative of a function $g(x)$ is given by $g'(x) = -7(x + 3)^2(x - 1)(x - 5)$. Find the x-coordinates [only the x since you don’t know what $g(x)$ is] for each local maximum and each local minimum of $g(x)$, if any.

(a) Local maxima at $x = 1$ and $x = 5$, local minimum at $x = -3$

(b) Local maximum at $x = 1$, local minimum at $x = 5$

(c) Local maxima at $x = -3$ and $x = 5$, local minimum at $x = 1$

(d) Local maximum at $x = 5$, local minimum $x = 1$

(e) Local maximum at $x = 1$, local minima at $x = -3$ and $x = 5
8. A particle moves along the x-axis and its position at time t is given by $x(t) = 400t - t^3$ for $0 \leq t$ where t is measured in seconds and x in feet. What is the average velocity from $t = 5$ to $t = 10$?

(a) 212.5 ft/sec
(b) 225 ft/sec
(c) 231.25 ft/sec
(d) 337.5 ft/sec
(e) 343.75 ft/sec

9. As in Problem #8, a particle moves along the x-axis and its position at time t is given by $x(t) = 400t - t^3$ for $0 \leq t$ where t is measured in seconds and x in feet. What is the instantaneous velocity at $t = 7.5$?

(a) 212.5 ft/sec
(b) 225 ft/sec
(c) 231.25 ft/sec
(d) 337.5 ft/sec
(e) 343.75 ft/sec

10. Find the maximum area of a rectangle that is inside the triangle formed by the x-axis and the lines $y = -3x + 12$ and $y = 3x + 12$ if the base of the rectangle is on the x-axis and the two upper vertices are on the lines $y = -3x + 12$ and $y = 3x + 12$ as in the illustration.

(a) 30
(b) 24
(c) 18
(d) 12
(e) 9
11. The first graph on the left below is the graph of \(y = f(x) \). Which of the graphs labeled (a), (b), (c), (d) and (e) best represents the graph of \(y = -f(x + 1) \)?

![Graphs](image)

12. The second derivative of the function \(f(x) \) is \(f''(x) = 16x - x^3 \). Find the \(x \)-coordinate of each inflection point of the function \(f(x) \).

(a) Only inflection point is at \(x = 0 \)
(b) Only inflection point is at \(x = 4 \)
(c) There are two inflection points: at \(x = -4 \) and at \(x = 4 \)
(d) There are three inflection points: at \(x = -4 \), at \(x = 0 \) and at \(x = 4 \)
(e) There are no inflection points
Part III, Calculators Allowed

1. Answer the questions below based on the following information about the function \(f \). You must justify your answers.

 (i) The function \(f \) is continuous and differentiable for all values of \(x \).

 (ii) \(f(x) < 0 \) for \(x < 0 \); \(f(x) > 0 \) for \(0 < x \).

 (iii) \(f''(x) < 0 \) for \(-6 < x < -2 \) and \(5 < x \).

 (iv) \(f''(x) > 0 \) for \(x < -6 \) and \(-2 < x < 5 \).

 (v) \(f'''(x) < 0 \) for \(x < -4 \) and \(3 < x < 7 \).

 (vi) \(f'''(x) > 0 \) for \(-4 < x < 3 \) and \(7 < x \).

(a) On which intervals is the function decreasing?

(b) What is the \(x \)-coordinate of each local maximum (if any)?

(c) On which intervals is the function concave up?

(d) What is the \(x \)-coordinate of each inflection point (if any)?
2. Use the following table of values for (a), (b) and (c) below

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$g(x)$</th>
<th>$f'(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>-8</td>
</tr>
</tbody>
</table>

(a) Find $b'(4)$ for $b(x) = \frac{g(x)}{f(x)}$.

(b) Find $h'(3)$ for $h(x) = g(f(x))$.

(c) Find $k'(2)$ for $k(x) = (f(x))^3$.
3. Find the absolute maximum and absolute minimum values of the function \(f(x) = 2x^3 - 150x^2 + 50,000 \) on each interval.

(a) \(-20 \leq x \leq 20\)

(b) \(-10 \leq x \leq 60\)
4. A large rectangular area is to be fenced off as in the diagram below (a large rectangle divided into two smaller rectangles). The fence used to divide the space costs $10 per foot and the fence used for the perimeter costs $15 per foot. If the total budget for the project is $60000, what are the dimensions which yield the largest area?
5. A spotlight at ground level is located 40 feet from a very tall building, directly in front of the door into the building. A 6 feet tall woman exits the building and walks directly towards the light. If she is walking at 5 feet per second, how fast is the length of her shadow on the building changing when she is 10 feet from the building?