Recurrent Event Data Analysis With Intermittently Observed Time-Varying Covariates

September 22, 2016

Date: November 4th, 2016

Time and location:  11:00am-12:00pm (noon), Fretwell 315

Speaker: Chiung-Yu Huang, Ph.D, Associate Professor, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University

Abstract: Although recurrent event data analysis is a rapidly evolving area of research, rigorous studies on modeling and estimation of the effects of time-varying covariates on the risk of recurrent events have been lacking. Existing methods for analyzing recurrent event data usually require that the covariate processes are observed throughout the entire follow-up period.  However, covariates are often observed periodically rather than continuously. We propose a novel semiparametric estimator for the regression parameters in the popular proportional rate model.  The proposed estimator is based on an estimated score function where we kernel smooth the mean covariate process. We show that the proposed semiparametric estimator is asymptotically unbiased, normally distributed and derive the asymptotic variance. Simulation studies are conducted to compare the performance of the proposed estimator and the simple methods carrying forward the last covariates. The different methods are applied to an observational study designed to assess the effect of Group A streptococcus (GAS) on pharyngitis among school children in India. 

(Hosted by Dr. Yanqing Sun, UNC Charlotte)